Citation: DAI Ji-Xiang, ZHANG Zhao-Fu, WANG Yong-Chang, WANG Shou-Hao, SHA Jian-Jun. In situ Growth of SiC Nanofibers on Carbon Fibers[J]. Chinese Journal of Inorganic Chemistry, ;2015, (12): 2379-2384. doi: 10.11862/CJIC.2015.309 shu

In situ Growth of SiC Nanofibers on Carbon Fibers

  • Corresponding author: SHA Jian-Jun, 
  • Received Date: 13 July 2015
    Available Online: 25 August 2015

    Fund Project: 教育部新世纪人才计划(No.NCET-11-0052) (No.NCET-11-0052)高等学校博士学科点专项科研基金博导类(No.2013004110013)资助项目。 (No.2013004110013)

  • SiC nanofibers were synthesized on the carbon fiber fabrics by chemical vapor reactions. The morphology, microstructure and crystallinity of SiC nanofibers were characterized by X-ray diffractometer (XRD), field emission scanning electron microscopy (FE-SEM) with energy dispersive spectrometer (EDS) and transmission electron microscopy (TEM), respectively. Results indicated that the large quantity of SiC nanofibers can be sythesized on the carbon fibers. The different morphologis were observed for the SiC nanofibers synthesized at different temperatures, but the diameters was almost same, which is about 100~300 nm. Based on the synthesis process and the characterization results, the vapor-solid (VS) reaction process are dominant mechanism for the growth of SiC nanofibers.
  • 加载中
    1. [1]

      [1] Seong H K, Choi H J, Lee S K, et al. Appl. Phys. Lett., 2004,85(7):1256-1258

    2. [2]

      [2] Yan B H, Zhou G, Duan W H, et al. Appl. Phys. Lett., 2006, 89(2):023104(3Pages)

    3. [3]

      [3] Shim H W, Kuppers J D, Huang H. J. Nanosci. Nanotechnol., 2008,8(8):3999-4002

    4. [4]

      [4] Yang W, Araki H, Tang C C, et al. Adv. Mater., 2005,17 (12):1519-1523

    5. [5]

      [5] MA Xiao-Jian(马小健), SUN Chang-Hui(孙常慧), QIAN Yi- Tai(钱逸泰). Chinese. J. Inorg. Chem.(无机化学学报), 2013,29(11):2276-2282

    6. [6]

      [6] Wagner R S, Ellis W C. Appl. Phys. Lett., 1964,4(5):89-90

    7. [7]

      [7] Trentler T J, Hickmen K M, Geol S C, et al. Science, 1995, 270(5243):1791-1794

    8. [8]

      [8] Niu J J, Wang J N. Eur. J. Inorg. Chem., 2007,2007(25): 4006-4010

    9. [9]

      [9] Fu Q G, Li H J, Shi X H, et al. Mater. Chem. Phys., 2006, 100(1):108-111

    10. [10]

      [10] Li Z J, Li H J, Chen X L, et al. Appl. Phys. A: Mater., 2003, 76(4):637-640

    11. [11]

      [11] HAO Ya-Juan(郝雅娟), JIN Guo-Qiang(靳国强), GUO Xiang -Yun(郭向云). Chinese J. Inorg. Chem.(无机化学学报), 2006,22(10):1833-1837

    12. [12]

      [12] Gundiah G, Madhav G V, Govindaraj A, et al. J. Mater. Chem., 2002,12(5):1606-1611

    13. [13]

      [13] Ye H, Titchenal N, Gogotsi Y, et al. Adv. Mater., 2005,17 (12):1531-1535

    14. [14]

      [14] Senthil K, Yong K. Mater. Chem. Phys., 2008,112(1):88-93

    15. [15]

      [15] ZHANG Yong(张勇), CHENG Zhi-Zhan(陈之战), SHI Er- Wei(施尔畏), et al. J. Inorg. Mater.(无机材料学报), 2009, 24(2):285-290

    16. [16]

      [16] Wang Z L, Dai Z R, Gao R P, et al. Appl. Phys. Lett., 2000, 77(21):3349-3351

    17. [17]

      [17] Wei G D, Qin W P, Zheng K Z, et al. Crys. Growth Des., 2009,9(3):1431-1435

    18. [18]

      [18] Wu R B, Zha B L, Wang L Y, et al. Phys. Status Solidi A, 2012,209(3):553-558

    19. [19]

      [19] Lu Q Y, Hu J Q, Tang K B, et al. Appl. Phys. Lett., 1999, 75(4):507-509

    20. [20]

      [20] Wu R B, Li B S, Gao M X, et al. Nanotechnology, 2008,19 (33):335-602

    21. [21]

      [21] Xia Y N, Yang P D, Sun Y G, et al. Adv. Mater., 2003,15 (5):353-361

    22. [22]

      [22] Brenner S S, Sears G W. Acta Metall. Sinica, 1956,4(3):268 -270

    23. [23]

      [23] Oding I A, Koptyev I M. Met. Sci. Heat Treat., 1961,3(7): 291-294

    24. [24]

      [24] Shi W S, Peng H Y, Zheng Y F, et al. Adv. Mater., 2000,12 (18):1343-1345

    25. [25]

      [25] Zhang R Q, Lifshitz Y, Lee S T. Adv. Mater., 2003,15(7/8): 635-640

  • 加载中
    1. [1]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    2. [2]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    3. [3]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    4. [4]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    5. [5]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    6. [6]

      Yun-Fei ZhangChun-Hui ZhangJian-Hui XuLei LiDan LiJin-Hong FanJiale GaoXin QuanQi WuYue ZouYan-Ling Liu . Enhanced degradation of florfenicol by microscale SiC/Fe: Dechlorination via hydrogenolysis. Chinese Chemical Letters, 2024, 35(7): 109385-. doi: 10.1016/j.cclet.2023.109385

    7. [7]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    8. [8]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    9. [9]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    10. [10]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    11. [11]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    12. [12]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    13. [13]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    14. [14]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    15. [15]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    16. [16]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    17. [17]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    18. [18]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    19. [19]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    20. [20]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

Metrics
  • PDF Downloads(0)
  • Abstract views(159)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return