Citation: HE Feng-Long, WANG Ping, HUANG Yan-Min. Porous TiO2 Film with Scaffold Structure for Enhanced Photovoltaic Performance of Dye-Sensitized Solar Cells[J]. Chinese Journal of Inorganic Chemistry, ;2015, (11): 2174-2180. doi: 10.11862/CJIC.2015.298 shu

Porous TiO2 Film with Scaffold Structure for Enhanced Photovoltaic Performance of Dye-Sensitized Solar Cells

  • Corresponding author: WANG Ping, 
  • Received Date: 21 April 2015
    Available Online: 10 September 2015

    Fund Project: 国家自然科学基金(No.61274129)资助项目。 (No.61274129)

  • The porous TiO2 film photoanodes were prepared based on TiO2 hollow spheres as the main substrate and TiO2 nanosheets as the scaffold in dye sensitized solar cell by doctor blade method. The results indicated that the highest photoelectric conversion efficiency reached 4.53% when the amount of TiO2 nanosheets as scaffold was 20wt% in film, which was higher than that of nonporous TiO2 film (4.06%) and that of no scaffold TiO2 film (4.17%). Furthermore, the photoelectric conversion efficiency improved to 7.06% when the thickness of the porous TiO2 film with 20wt% nanosheets was controlled 33 μm. The enhanced photoelectric conversion efficiency can be attributed the cooperation effect of the effective electron transmission and the large adsorption amount of dye molecules in scaffold structure. This research designed scaffold structure provides a new idea for the preparation of porous TiO2 film to enhance performance of dye sensitized solar cell.
  • 加载中
    1. [1]

      [1] Iwasakit T, Sawada T, Kamada H, et al. J. Phys. Chem., 1979,83(16):2142-2145

    2. [2]

      [2] O'regan B, Gratzel M. Nature, 1991,353(6346):737-740

    3. [3]

      [3] Chandiran A K, Sauvage F, Casas-Cabanas M, et al. J. Phys. Chem. C, 2010,114(37):15849-15856

    4. [4]

      [4] WU Di(吴迪), SHEN Zhen(沈珍), XUE Zhao-Li(薛兆历), et al. Chinese J. Inorg. Chem.(无机化学学报), 2007,23(1): 1-14

    5. [5]

      [5] Wang P, Dai Q, Zakeeruddin S M, et al. J. Am. Chem. Soc., 2004,126(42):13590-13591

    6. [6]

      [6] LI Sheng-Jun(李胜军), LIN Yuan(林原), YANG Shi-Wei(杨 世伟), et al. Chinese J. Inorg. Chem.(无机化学学报), 2007, 23(11):1965-1969

    7. [7]

      [7] Adachi M, Murata Y, Takao J, et al. J. Am. Chem. Soc., 2004,126(45):14943-14949

    8. [8]

      [8] Kim Y J, Lee M H, Kim H J, et al. Adv. Mater., 2009,21 (36):3668-3673

    9. [9]

      [9] Cheng P, Du S, Cai Y, et al. J. Phys. Chem. C, 2013,117 (46):24150-24156

    10. [10]

      [10] Zukalova M, Zukal A, Kavan L, et al. Nano Lett., 2005,5(9): 1789-1792

    11. [11]

      [11] Wang J, Liu L. Electrochem. Lett., 2014,3(4):H5-H7

    12. [12]

      [12] Roy P, Kim D, Paramasivam I, et al. Electrochem. Commun., 2009,11(5):1001-1004

    13. [13]

      [13] Lei B X, Liao J Y, Zhang R, et al. J. Phys. Chem. C, 2010, 114(35):15228-15233

    14. [14]

      [14] Yu J, Fan J, Zhao L. Electrochim. Acta, 2010,55(3):597- 602

    15. [15]

      [15] Sauvage F, Chen D, Comte P, et al. ACS Nano, 2010,4(8): 4420-4425

    16. [16]

      [16] Lin J, Liu X, Guo M, et al. Nanoscale, 2012,4(16):5148- 5153

    17. [17]

      [17] Shang G, Wu J, Huang M, et al. J. Mater. Chem. A, 2013,1 (34):9869-9874

    18. [18]

      [18] Zhu L, Zhao Y L, Lin X P, et al. Superlattices Microstruct., 2014,65:152-160

    19. [19]

      [19] Sun X, Liu Y, Tai Q, et al. J. Phys. Chem. C, 2012,116(22): 11859-11866

    20. [20]

      [20] Cao L, Wu C, Hu Q, et al. J. Am. Ceram. Soc., 2013,96(2): 549-554

    21. [21]

      [21] Qiu Y, Chen W, Yang S. Angew. Chem., 2010,122(21):3757-3761

    22. [22]

      [22] Ke G J, Chen H Y, Su C Y, et al. J. Mater. Chem. A, 2013, 1(42):13274-13282

    23. [23]

      [23] Pan J, Liu G, Lu G Q, et al. Angew. Chem. Int. Ed., 2011, 50(9):2133-2137

    24. [24]

      [24] Han L, Koide N, Chiba Y, et al. Appl. Phys. Lett., 2005,86 (21):213501-213503

    25. [25]

      [25] Fan J, Liu S, Yu J. J. Mater. Chem., 2012,22(33):17027-17036

  • 加载中
    1. [1]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    2. [2]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    3. [3]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    4. [4]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    5. [5]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    6. [6]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    7. [7]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    8. [8]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

    9. [9]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    10. [10]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    11. [11]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    12. [12]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    13. [13]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    14. [14]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    15. [15]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    16. [16]

      Ying HouZhen LiuXiaoyan LiuZhiwei SunZenan WangHong LiuWeijia Zhou . Laser constructed vacancy-rich TiO2-x/Ti microfiber via enhanced interfacial charge transfer for operando extraction-SERS sensing. Chinese Chemical Letters, 2024, 35(9): 109634-. doi: 10.1016/j.cclet.2024.109634

    17. [17]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    18. [18]

      Yaping WangPengcheng YuanZeyuan XuXiong-Xiong LiuShengfa FengMufan CaoChen CaoXiaoqiang WangLong PanZheng-Ming Sun . Ti3C2Tx MXene in-situ transformed Li2TiO3 interface layer enabling 4.5 V-LiCoO2/sulfide all-solid-state lithium batteries with superior rate capability and cyclability. Chinese Chemical Letters, 2024, 35(6): 108776-. doi: 10.1016/j.cclet.2023.108776

    19. [19]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    20. [20]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

Metrics
  • PDF Downloads(7)
  • Abstract views(271)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return