Citation: WANG Hong-Ming, ZHENG Rui, LI Gui-Rong, LI Pei-Si. First-Principles Research on the Electronic and Magnetic properties of MgZn2 Phase[J]. Chinese Journal of Inorganic Chemistry, ;2015, (11): 2143-2151. doi: 10.11862/CJIC.2015.290 shu

First-Principles Research on the Electronic and Magnetic properties of MgZn2 Phase

  • Corresponding author: LI Gui-Rong, 
  • Received Date: 21 April 2015
    Available Online: 10 September 2015

    Fund Project: 国家自然科学基金(No.51371091,51174099)资助项目。 (No.51371091,51174099)

  • MgZn2 phase is the main reinforcement in the high strength-toughness aluminum alloy, such as Al-Zn-Mg-Cu (7××× series). These alloys can be strengthened by solution and aging heat treatment. The precipitation sequence is recognized as: supersaturated solute→GP area→metastable η' phase→stable η(MgZn2) phase. Therefore, it is important to know the quantum behavior and phase formation mechanism of MgZn2. But till to now, the concerned research has been rarely reported. Besides, the magnetic property of MgZn2 is also important when the aluminum alloy is processed in the presence of magnetic field. By using the first principles method, the electronic and magnetic properties of MgZn2 were calculated and analyzd in detail. The computing results on the band structure and density of state demonstrates that Zn-Mg bond is generated through the interaction of two sp hybrid state, which are from Zn4s-4p hybridized orbit and Mg3s-3p hybridized orbit separately. Especially nearby the Fermi level an intense interaction takes place between the Zn4p and Mg3p orbits. The Mulliken population distribution computation illustrates that the overlapped population distribution of Zn1-Mg or Zn2-Mg almost equals to zero. Here, it is noted that the Zn1 and Zn2 just means the Zn atoms located individually at the edge and the interior of lattice. The calculation outcome of electron density shows that the electron density distribution of Mg-Zn has an obvious locality. Combining these results with the electronegativity difference of Mg and Zn, it is regarded that the Zn-Mg is polar covalent bond. The difference of Zn1-Mg bond and Zn2-Mg bond is that the contribution of Zn24s orbit to the bond formation is higher than that of Zn14s orbit in -10~-6 eV, the contribution of Zn14s orbit to the bond formation is higher than that of Zn24s orbit in 2~5 eV. The population distribution also demonstrates that the overlapped population of Zn1-Zn1 is -1.15, which proves that the electrons are in the antibonding orbit; nevertheless, the population distribution of Zn2-Zn2 is 1.08 and the corresponding electrons are in the bonding orbital. The population distribution and electron density calculating results reveal that the Mg-Mg bond is covalent bond while the Zn1-Zn2 bond is metallic bond. Furthermore, the studies on the integrated spin density of state demonstrate that the MgZn2 phase shows paramagnetism, which stems mainly from the two unpaired electrons in the Zn1-Mg bond, and the paramagnetism of MgZn2 will make a magnetoplastic effect in Al-Zn-Mg-Cu (7××× series) high strength-toughness aluminum alloy in the presence of magnetic field.
  • 加载中
    1. [1]

      [1] LIU Xiao-Tao(刘晓涛), CUI Jian-Zhong(崔建忠). Mater. Rev.(材料导报), 2005,3:47-51

    2. [2]

      [2] Sha G, Cerezo A. Acta Mater., 2004,52(15):4503-4516

    3. [3]

      [3] Lendvai J. Mater. Sci. Forum, 1996,217-222:43-56

    4. [4]

      [4] Stiller K, Warren P J, Hansen V, et al. Mater. Sci. Eng. A, 1999,A270:55-63

    5. [5]

      [5] Golovin Y I. Phys. Solid State, 2004,46:789-824

    6. [6]

      [6] Dong J, Zhang H J, Xu G, et al. Europhys. Lett., 2005,83: 27006(4Pages)

    7. [7]

      [7] De la cruz C, Huang Q, Lynn J, et al. Nature, 2008,453:899- 902

    8. [8]

      [8] Komura Y, Tokunaga K. Acta Crystallogr. B, 1980,B36:1548- 1554

    9. [9]

      [9] Kohn W, Sham L J. Phys. Rev. A, 1965,140:A1133-A1138

    10. [10]

      [10] Milman V, Winkler B, White J A, et al. Int. J. Quant. Chem., 2000,77:895-910

    11. [11]

      [11] Hohenberg P, Kohn W. Phys. Rev. B, 1964,136:B864-B871

    12. [12]

      [12] Mattsson A E, Schultz P A, Desjarlais M P, et al. Model Simul. Mater. Sci. Eng., 2005,13:R1-R31

    13. [13]

      [13] Perdew J P, Zunger A. Phys. Rev. B, 1981,23:5048-5079

    14. [14]

      [14] Perdew J P, Burke K, Ernzerhof M. Phys. Rev. Lett., 1996, 77:3865-3868

    15. [15]

      [15] nderbilt D. Phys. Rev. B, 1990,41:7892-7895

    16. [16]

      [16] Mulliken R S. J. Chem. Phys., 1955,23:1841-1846

    17. [17]

      [17] LEI Xue-Ling(雷雪玲), ZHU Heng-Jiang(祝恒江), GE Gui- Xian(葛桂贤), et al. Acta Phys. Sin.(物理学报), 2008,9: 5491-5499

  • 加载中
    1. [1]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    2. [2]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    3. [3]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    4. [4]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    5. [5]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    6. [6]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    7. [7]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    8. [8]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    9. [9]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    10. [10]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    11. [11]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    12. [12]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    13. [13]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    14. [14]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    15. [15]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    16. [16]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    17. [17]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    18. [18]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    19. [19]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    20. [20]

      Shengwen GuanZhaotong WeiNingxu HanYude WeiBin XuMing WangJunjuan Shi . Construction of metallo-complexes with 2,2′:6′,2″-terpyridine substituted triphenylamine in different modified positions and their photophysical properties. Chinese Chemical Letters, 2024, 35(7): 109348-. doi: 10.1016/j.cclet.2023.109348

Metrics
  • PDF Downloads(0)
  • Abstract views(968)
  • HTML views(226)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return