Citation: XIE Peng-Cheng, HUANG Jie. Visible-Light Photocatalytic Properties of Ti1-xVxO2 Films with Dominant {211} Facets Deposited at Room Temperature[J]. Chinese Journal of Inorganic Chemistry, ;2015, (11): 2197-2204. doi: 10.11862/CJIC.2015.279 shu

Visible-Light Photocatalytic Properties of Ti1-xVxO2 Films with Dominant {211} Facets Deposited at Room Temperature

  • Corresponding author: XIE Peng-Cheng, 
  • Received Date: 29 May 2015
    Available Online: 12 August 2015

    Fund Project: 中国科学院广州地球化学研究所有机地球化学国家重点实验室开放基金(OGL-201111)资助项目。 (OGL-201111)

  • Ti1-xVxO2 films with dominant {211} facets were deposited by direct current reactive magnetron sputtering with Ti and Vtargets (99.99% purity) at room temperature. We study the composition, crystal structure and visible-light photocatalytic properties of the films as a function of power of Vtarget. The results showed that crystal phase of Ti1-xVxO2 films was anatase with (211) preferred orientation, but the films deposited at different power of Vtarget had different crystallinities. With the increase of power of Vtarget, the relative contents of Velement increased gradually, meanwhile, crystal grain and deposition rate also increased. In addition, the surface roughness of the film had a maximum value when the power of Vtarget was 150 W. The addition of Velement gives rise to the band gap of TiO2 films narrowing down. As a result, the optical absorption edge of the Ti1-xVxO2 films shifts towards visible-light zone, improving the visible-light photocatalytic activity of the films. When the power of Vtarget came to 150 W, the value of band gap of the Ti1-xVxO2 film was about 2.82 eV, and the film degraded ~80% RhBdyes after 2 h visible-light irradiation. This can be attributed to the synergistic effect of narrow band gap, high energy facet {211}, and high crystallinity.
  • 加载中
    1. [1]

      [1] Fujishima A, Honda K. Nature, 1972,238:37-38

    2. [2]

      [2] Linsebigler A L, Lu G Q, Yates J T. Chem. Rev., 1995,95 (3):735-758

    3. [3]

      [3] Hoffmann M R, Martin S T, Choi W Y, et al. Chem. Rev., 1995,95(1):69-96

    4. [4]

      [4] Chen X, Mao S S. Chem. Rev., 2007,107(7):2891-2959

    5. [5]

      [5] Chen H H, Nanayakkara C E, Grassian V H. Chem. Rev., 2012,112(11):5919-5948

    6. [6]

      [6] Cromer D T, Herrington K. J. Am. Chem. Soc., 1955,77(18): 4708-4709

    7. [7]

      [7] Bokhimi X, Morales A, Aguilar M, et al. Int. J. Hydrogen Energy, 2001,26(12):1279-1287

    8. [8]

      [8] QIN Wei(秦纬), LIU Jian-Jun(刘建军), ZUO Sheng-Li (左胜利), et al. J. Inorg. Mater. (无机材料学报), 2007,22 (5):931-936

    9. [9]

      [9] Sumita T, Otsuka H, Kubota H, et al. Nucl. Instrum. Methods Phys. Res., Sect. B, 1999,148(1-4):758-761

    10. [10]

      [10] Sato S. Chem. Phys. Lett., 1986,123(1/2):126-128

    11. [11]

      [11] Galinska A, Walendziewski J. Energy Fuels, 2005,19(3): 1143-1147

    12. [12]

      [12] Nowotny J, Sorrell C C, Bak T, et al. Sol. Energy, 2005,78 (5):593-602

    13. [13]

      [13] Yang H G, Sun C H, Qiao S Z, et al. Nature, 2008,453 (7195):638-641

    14. [14]

      [14] Han X G, Kuang Q, Jin M S, et al. J. Am. Chem. Soc., 2009,131(9):3152-3153

    15. [15]

      [15] Yu J G, Qi L F, Jaroniec M. J. Phys. Chem. C, 2010,114 (30):13118-13125

    16. [16]

      [16] Wu K R, Yeh C W, Hung C H, et al. J. Nanosci. Nanotechnol., 2009,9(6):3433-3440

    17. [17]

      [17] Wu K R, Yeh C W, Hung C H, et al. J. Nanosci. Nanotechnol., 2010,10(2):1057-1064

    18. [18]

      [18] Wang C, Hu Q Q, Huang J Q, et al. Int. J. Hydrogen Energy, 2014,39(5):1967-1971

    19. [19]

      [19] Romero L, Piccirillo C, Castro P M L, et al. Chem. Vap. Deposition, 2015,21(1/2/3):63-70

    20. [20]

      [20] Ali A, Ruzybayev I, Yassitepe E, et al. J. Phys. Chem. C, 2013,117(38):19517-19524

    21. [21]

      [21] Ren W J, Ai Z H, Jia F L, et al. Appl. Catal., B, 2007,69 (3/4):138-144

    22. [22]

      [22] Wang H, Lewis J P. J. Phys.: Condens. Matter., 2005,17(21): 209-213

    23. [23]

      [23] HE Jing(何静), JIANG Wei-Hui(江伟辉), YU Yun(于云), et al. J. Inorg. Mater. (无机材料学报), 2005,20(3):713-719

    24. [24]

      [24] Wang Y, Doren D J. Solid State Commun., 2005,136(3):142-146

    25. [25]

      [25] CHEN Xi-Ming(陈喜明), JIANG Xin(蒋新). J. Zhejiang Univ. (浙江大学学报), 2006,40(1):145-148

    26. [26]

      [26] LIU Huan(刘欢), GONG Shu-Ping(龚树萍), LIU Jian-Qiao (刘剑桥), et al. J. Func. Mater. (功能材料), 2011,42(11): 2017-2020

    27. [27]

      [27] ZHANG Xiao-Yong(张晓勇), CHAO Ming-Ju(晁明举), LIANG Er-Jun(梁二军), et al. J. Inorg. Mater. (无机材料学 报), 2009,24(1):34-38

    28. [28]

      [28] Weiser H B, Milligan W O. J. Phys. Chem., 1934,38(4):513-519

    29. [29]

      [29] Wen C Z, Jiang H B, Qiao S Z, et al. J. Mater. Chem., 2011,21(20):7052-7061

    30. [30]

      [30] Jeong B S, Norton D P, Budai J D, et al. Thin Solid Films, 2004,446(1):18-22

    31. [31]

      [31] Klug H P, Alexander L E. X-Ray Diffraction Procedures: For Polycrystalline and Amorphous Materials. New York: Wiley-Interscience, 1974:87

    32. [32]

      [32] LAI Fa-Chun(赖发春), LIN Li-Mei(林丽梅), QU Yan(瞿燕). Acta Photonica Sin. (光子学报), 2006,35(10):1551-1554

    33. [33]

      [33] Al-Ahmad A Y. Opt. Spectrosc., 2012,113(2):197-203

    34. [34]

      [34] Mardare D, Tasca M, Delibas M, et al. Appl. Surf. Sci., 2000,156(1/2/3/4):200-206

    35. [35]

      [35] Tang H, Prasad K, Sanjines R, et al. J. Appl. Phys., 1994,75(4):2042-2047

    36. [36]

      [36] Zheng J Y, Bao S H, Guo Y, et al. ACS Appl. Mater. Interfaces, 2014,6(8):5940-5946

    37. [37]

      [37] Asanuma T, Matsutani T, Liu C, et al. J. Appl. Phys., 2004, 95(11):6011

    38. [38]

      [38] Watanabe T, Takizawa T, Honda K. J. Phys. Chem., 1977,81(19):1845-1851

  • 加载中
    1. [1]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    2. [2]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    3. [3]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    4. [4]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    5. [5]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    6. [6]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    7. [7]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    8. [8]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    9. [9]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    10. [10]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    11. [11]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    12. [12]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    13. [13]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    14. [14]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    15. [15]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    16. [16]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    17. [17]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    18. [18]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    19. [19]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    20. [20]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

Metrics
  • PDF Downloads(0)
  • Abstract views(176)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return