Citation: CHANG Jiang-Wei, FU Ting-Jun, ZHANG Hong-Jian, ZHOU Hao, LI Zhong. Effect of Alkaline Concentration on Mesopore Formation in Acid Pre-treated HZSM-5 Zeolite and Its Catalytic Performance in the Methanol-to-Gasoline Reaction[J]. Chinese Journal of Inorganic Chemistry, ;2015, (11): 2119-2127. doi: 10.11862/CJIC.2015.278 shu

Effect of Alkaline Concentration on Mesopore Formation in Acid Pre-treated HZSM-5 Zeolite and Its Catalytic Performance in the Methanol-to-Gasoline Reaction

  • Corresponding author: LI Zhong, 
  • Received Date: 1 April 2015
    Available Online: 9 September 2015

    Fund Project: 太原理工大学人才资助项目(No.tyut-rc201454a)。 (No.tyut-rc201454a)

  • Modifying of ZSM-5 molecular sieve in acid and alkaline solution was studied at 80 ℃. For the post synthesis, dealumination prior to desilication step was critical for the following mesopore formation by desilication and the effect of alkaline concentration on the crystallinity, porosity, morphology and acidity of zeolite was investigated by deep characterization of BET, XRD, FT-IR, NH3-TPD, and TEM. It was found that the microporous structure was well reserved in acid dealumination alone, alkaline desilication could promote smaller mesopore. However, acid dealumination before desilication facilitated the mesopore formation resulting in larger pore volume. When the concentration of alkaline solution was increased to 0.6 mol·L-1, both the pore volume and Sext/Smicro firstly increased and then decreased. The sample via post treatment of 2 mol·L-1 HCl and 0.4 mol·L-1 NaOHsolution was found to have higher proportion of mesopores, less amount of acid sites, especially strong acidity. Methanol conversion to gasoline reaction was carried out in a fixed reactor at 400 ℃, 0.1 MPa and WHSV=2.1 h-1. The sample subjected to 2 mol·L-1 HCl acid solution and 0.4 mol·L-1 NaOH solution exhibited greater improvement: the yield of gasoline range increased to 34wt% from 30wt%, the lifetime was prolonged to 135 h relative to parent ZSM-5 and the content of aromatics was decreased from 73wt% to 20wt%. The results were well rationalized by alterations of acidic properties, mesopore formation and improved diffusivity.
  • 加载中
    1. [1]

      [1] Rownaghi A A, Hedlund J. Ind. Eng. Chem. Res., 2011,50 (21):11872-11878

    2. [2]

      [2] Ghavipour M, Behbahani R M, Moradi G R, et al. Fuel, 2013,113:310-317

    3. [3]

      [3] Bjφrgen M, Joensen F, Spangsberg Holm M, et al. Appl. Catal. A: Gen., 2008,345(1):43-50

    4. [4]

      [4] Fathi S, Sohrabi M, Falamaki C. Fuel, 2014,116:529-537

    5. [5]

      [5] Stöcker M. Microporous Mesoporous Mater., 1999,29(1/2):3-48

    6. [6]

      [6] Sazama P, Wichterlova B, Dedecek J, et al. Microporous Mesoporous Mater., 2011,143(1):87-96

    7. [7]

      [7] Kim J, Choi M, Ryoo R. J. Catal., 2010,269(1):219-228

    8. [8]

      [8] Janssens T V W. J. Catal., 2009,264(2):130-137

    9. [9]

      [9] Tarach K, Góra-Marek K, Tekla J, et al. J. Catal., 2014,312: 46-57

    10. [10]

      [10] Beznis N V, van Laak A N C, Weckhuysen B M, et al. Microporous Mesoporous Mater., 2011,138(1/2/3):176-183

    11. [11]

      [11] Bleken F L, Barbera K, Bonino F, et al. J. Catal., 2013,307: 62-73

    12. [12]

      [12] Verboekend D, Pérez-Ramírez J. Chem. Eur. J., 2011,17(4): 1137-1147

    13. [13]

      [13] Milina M, Mitchell S, Trinidad Z D, et al. Catal. Sci. Technol., 2012,2(4):759-766

    14. [14]

      [14] Verboekend D, Vilé G, Pérez-Ramírez J. Cryst. Growth Des., 2012,12(6):3123-3132

    15. [15]

      [15] Verboekend D, Keller T C, Mitchell S, et al. Adv. Funct. Mater., 2013,23(15):1923-1934

    16. [16]

      [16] Svelle S, Sommer L, Barbera K, et al. Catal. Today, 2011, 168(1):38-47

    17. [17]

      [17] Verboekend D, Vilé G, Pérez-Ramírez J. Adv. Funct. Mater., 2012,22(5):916-928

    18. [18]

      [18] Xin H, Li X, Fang Y, et al. J. Catal., 2014,312:204-215

    19. [19]

      [19] Groen J C, Bach T, Ziese U, et al. J. Am. Chem. Soc., 2005, 127(31):10792-10793

    20. [20]

      [20] Verboekend D, Mitchell S, Milina M, et al. J. Phys. Chem. C, 2011,115(29):14193-14203

    21. [21]

      [21] Verboekend D, Keller T C, Milina M, et al. Chem. Mater., 2013,25(9):1947-1959

    22. [22]

      [22] Fodor D, Pacosova L, Krumeich F, et al. Chem. Commun., 2014,50(1):76-78

    23. [23]

      [23] Tao Y, Kanoh H, Kaneko K. J. Am. Chem. Soc., 2003,125 (20):6044-6045

    24. [24]

      [24] ZHANG Qian(张前), CHEN Chun-Ying(陈春影), DING Shuang(丁双), et al. Chem. J. Chinese Universities(高等学 校化学学报), 2012,33(03):453-457

    25. [25]

      [25] DI Zuo-Xing(狄佐星), LI Jian-Qing(李建青), MIAO Peng- Jie(苗鹏杰), et al. J. Fuel Chem. Technol.(燃料化学学报), 2014,42(2):225-230

    26. [26]

      [26] CHENG Zhi-Lin(程志林), CHAO Zi-Sheng(晁自胜), LIN Hai-Qiang(林海强), et al. Chinese J. Inorg. Chem.(无机化 学学报), 2003,19(4):396-400

    27. [27]

      [27] LIU Wei(刘薇), XU Yi-De(徐奕德), LI Li-Yun(李丽云), et al. J. Mol. Catal.(China)(分子催化), 1998,12(4):20-27

    28. [28]

      [28] Rownaghi A A, Rezaei F, Hedlund J. Catal. Commun., 2011,14(1):37-41

    29. [29]

      [29] Sano T, Soga K. Chem. Commun., 1997(20):1945-1946

    30. [30]

      [30] He Y, Liu M, Dai C, et al. Chin. J. Catal.(催化学报), 2013, 34(6):1148-1158

    31. [31]

      [31] SONG Yue-Qin(宋月芹), LIU Feng(刘锋), KANG Cheng- Lin(康承琳), et al. Chin. J. Catal.(催化学报), 2009,30(2): 159-164

    32. [32]

      [32] Ilias S, Bhan A. ACS Catal., 2012,3(1):18-31

    33. [33]

      [33] Ramasamy K K, Wang Y. Catal. Today, 2014,237:89-99

    34. [34]

      [34] Olsbye U, Svelle S, Bjrgen M, et al. Angew. Chem. Int. Ed., 2012,51(24): 5810-5831

  • 加载中
    1. [1]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    2. [2]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    3. [3]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    4. [4]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    5. [5]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    6. [6]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    7. [7]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    8. [8]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    9. [9]

      Aimin FuChunmei ChenQin LiNanjin DingJiaxin DongYu ChenMengsha WeiWeiguang SunHucheng ZhuYonghui Zhang . Niduenes A−F, six functionalized sesterterpenoids with a pentacyclic 5/5/5/5/6 skeleton from endophytic fungus Aspergillus nidulans. Chinese Chemical Letters, 2024, 35(9): 109100-. doi: 10.1016/j.cclet.2023.109100

    10. [10]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    11. [11]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    12. [12]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    13. [13]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    14. [14]

      Ruizhi Yang Xia Li Weiping Guo Zixuan Chen Hongwei Ming Zhong-Zhen Luo Zhigang Zou . New thermoelectric semiconductors Pb5Sb12+xBi6-xSe32 with ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(3): 100268-100268. doi: 10.1016/j.cjsc.2024.100268

    15. [15]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    16. [16]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    17. [17]

      An LuYuhao GuoYi YanLin ZhaiXiangyu WangWeiran CaoZijie LiZhixia ZhaoYujie ShiYuanjun ZhuXiaoyan LiuHuining HeZhiyu WangJian-Cheng Wang . Nanomedicine integrating the lipidic derivative of 5-fluorouracil, miriplatin and PD-L1 siRNA for enhancing tumor therapy. Chinese Chemical Letters, 2024, 35(6): 108928-. doi: 10.1016/j.cclet.2023.108928

    18. [18]

      Haohao SunWenxuan WangYuli XiongZelang JianWen Chen . Boosting the electrochromic properties by large V2O5 nanobelts interlayer spacing tuned via PEDOT. Chinese Chemical Letters, 2024, 35(9): 109213-. doi: 10.1016/j.cclet.2023.109213

    19. [19]

      Lei ZhouYoujun ZhouLizhen FangYiqiao BaiYujia MengLiang LiJie YangYong Yao . Pillar[5]arene based artificial light-harvesting supramolecular polymer for efficient and recyclable photocatalytic applications. Chinese Chemical Letters, 2024, 35(9): 109509-. doi: 10.1016/j.cclet.2024.109509

    20. [20]

      Lili WangYa YanRulin LiXujie HanJiahui LiTing RanJialu LiBaichuan XiongXiaorong SongZhaohui YinHong WangQingjun ZhuBowen ChengZhen Yin . Interface engineering of 2D NiFe LDH/NiFeS heterostructure for highly efficient 5-hydroxymethylfurfural electrooxidation. Chinese Chemical Letters, 2024, 35(9): 110011-. doi: 10.1016/j.cclet.2024.110011

Metrics
  • PDF Downloads(0)
  • Abstract views(174)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return