Citation: WANG Cui-Juan, MAO Kai-Li, DAI Hai-Yu, LIU Xiao-Lei, MENG Tao, ZHANG Zhi-Bin, ZHOU Xian-Li, WANG Yao-Yu. Structural Diversity of Two Cadmium(Ⅱ) Polymers Based on Pyrazine Derivative Ligand: Syntheses, Crystal Structures and Bioactivities[J]. Chinese Journal of Inorganic Chemistry, ;2015, (11): 2221-2228. doi: 10.11862/CJIC.2015.267 shu

Structural Diversity of Two Cadmium(Ⅱ) Polymers Based on Pyrazine Derivative Ligand: Syntheses, Crystal Structures and Bioactivities

  • Corresponding author: WANG Cui-Juan, 
  • Received Date: 9 February 2015
    Available Online: 15 July 2015

    Fund Project: 国家自然科学基金(No.21401151) (No.21401151)四川省科技支撑计划(No.2015GZ0233) (No.2015GZ0233)中央高校基本科研业务费专项资金(No.SWJTU12CX049)资助项目。 (No.SWJTU12CX049)

  • Under same conditions, ligand derived from Pyrazine was selected and reacted with different Cadmium(Ⅱ) salts, producing two novel coordination compounds [Cd(L)2]n (1) and [Cd2(L)2(CH3COO)2(H2O)2] (2) (HL=4-((3-(pyrazin-2-yl)-1H-pyrazol-1-yl)methyl) benzoic acid), which were characterized by element analysis, TGA, fluorescence spectrum and single X-ray crystal diffraction. Compound 1 crystallizes in the triclinic system with P1 space group, and each Cd(Ⅱ) trigonal bipyramidal are connected to each other to form an infinite 2D sandwich structure. Compound 2 adopts binuclear structure with space group triclinic. Two carboxylate groups coordinated to Cd(Ⅱ) adopt a bidentate chelating mode fashion, which are different from coordination mode of 1. Structural discrepancy in compounds 1 and 2 can be assigned to different chelating modes of carboxylate groups of ligand, as well as ions effect. Superoxide dismutase (SOD) mimetic activity of compound 1 and 2 has been investigated by the modified Marklund method.
  • 加载中
    1. [1]

      [1] Yaghi O M, Li H, Davis C, et al. Acc. Chem. Res., 1998,31: 474-484

    2. [2]

      [2] Yaghi O M, M O' Keeffe, Ockwig N W, et al. Nature, 2003, 423:705-714

    3. [3]

      [3] Chen Y, Han S Y, Li X, et al. Inorg. Chem., 2014,53:10006- 10008

    4. [4]

      [4] Wang K C, Feng D W, Liu T F, et al. J. Am. Chem. Soc., 2014,136:13983-13986

    5. [5]

      [5] Kong G Q, Ou S, Zou C Z, et al. J. Am. Chem. Soc., 2012, 134:19851-19857

    6. [6]

      [6] (a)Yaghi O M, O' Keeffe M, Ockwig N W, et al. Nature, 2003, 423:705-714

    7. [7]

      (b)Batten S R, Robson R. Angew. Chem. Int. Ed., 1998,37: 1460-1494

    8. [8]

      [7] Li D S, Fu F, Zhao J, et al. Dalton Trans., 2010,39:11522- 11525

    9. [9]

      [8] Wibowo A C, Smith M D, Zurloye H C. Cryst. Growth Des., 2011,11:4449-4457

    10. [10]

      [9] Zhang B J, Wang C J, Qiu G M, et al. Inorg. Chem. Acta, 2013,397:48-59

    11. [11]

      [10] Qiu G M, Wang C J, Zhang Y J, et al. Bull. Korean Chem. Soc., 2012,33:2603-2608

    12. [12]

      [11] (a)Geldard J F, Lions F. J. Org. Chem., 1965,30:318-319

    13. [13]

      (b)Case F H. J. Org. Chem., 1965,30:931-933

    14. [14]

      [12] Sheldrick G M. SHELXS-97, Program for Crystal Structure Determination, University of Göttingen, Germany, 1997.

    15. [15]

      [13] Sheldrick G M. SHELXL-97, Program for Crystal Structure Refinement, University of Göttingen, Germany, 1997.

    16. [16]

      [14] Sinha S, Srivastava A K, Tripathi C M, et al. Bioorg. Chem. App., 2007,2007:87918-87927

    17. [17]

      [15] Luan X J, Cai X H, Wang Y Y, et al. Chem. Eur. J., 2006, 12:6281-6289

    18. [18]

      [16] (a)Son S U, Park K H, Kim B Y, et al. Cryst. Growth Des., 2003,3:507-512

    19. [19]

      (b)LIU Xiao-Lei(刘晓雷), WANG Cui-Juan(王萃娟), MAO Kai-Li(毛凯力), et al. Chinese J. Inorg. Chem.(无机化学 学报), 2014,30:1983-1946

    20. [20]

      [17] Barszcz B, Masternaka J, Sawka-Dobrowolska W. Dalton Trans., 2013,42:5960-5963

    21. [21]

      [18] Wang X L, Qin C, Wang E B, et al. Angew. Chem., 2004, 116:5146-5150

    22. [22]

      [19] Zhao X X, Ma J P, Dong Y B, et al. Cryst. Growth Des., 2007,7:1058-1068

    23. [23]

      [20] Wang C J, Wang Y Y, Liu J Q, et al. Inorg. Chem. Acta, 2009,362:543-550

    24. [24]

      [21] Seitz M, Kaiser A, Stempfhuber S, et al. Inorg. Chem., 2005, 44:4630-4636

    25. [25]

      [22] Lamann-Glees A, Ruschewitz U. Cryst. Growth Des., 2012, 12:854-861

    26. [26]

      [23] Du M, Zhang Z H, Zhao X J, et al. Cryst. Growth Des., 2006,6:114-121

    27. [27]

      [24] Liu Y Y, Ma J F., Su Z M, et al. Inorg. Chem., 2007,46: 3027-3037

    28. [28]

      [25] (a)Zhang L Y, Liu G F, Zheng S L, et al. Eur. J. Inorg. Chem., 2003,16:2965-2971

    29. [29]

      (b)Bunz U H F. Chem. Rev., 2000,100:1605-1644

    30. [30]

      [26] Wu S Z, Zeng F, Zhu H P, et al. J. Am. Chem. Soc., 2005, 127:2048-2049

  • 加载中
    1. [1]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    2. [2]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    3. [3]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    4. [4]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    5. [5]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    6. [6]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    7. [7]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    8. [8]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    9. [9]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    10. [10]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    11. [11]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    12. [12]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    13. [13]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    14. [14]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    15. [15]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    16. [16]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    17. [17]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    18. [18]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    19. [19]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    20. [20]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

Metrics
  • PDF Downloads(0)
  • Abstract views(393)
  • HTML views(68)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return