Citation: LU Xin-Rong, ZHAO Ying, LIU Jian, LI Cheng-Hui, YOU Xiao-Zeng. Modulation of the Structure and Property of ABX3 Type Perovskite Photovoltaic Material[J]. Chinese Journal of Inorganic Chemistry, ;2015, 31(9): 1678-1686. doi: 10.11862/CJIC.2015.257 shu

Modulation of the Structure and Property of ABX3 Type Perovskite Photovoltaic Material

  • Corresponding author: LI Cheng-Hui,  YOU Xiao-Zeng, 
  • Received Date: 20 May 2015
    Available Online: 20 July 2015

    Fund Project: 国家重点基础研究发展规划项目(No.2011CB933300) (No.2011CB933300)国家教育部博士点专项基金(No.20120091130002) (No.20120091130002)江苏省科技支撑计划项目(No.BE2014147-2)等资助。 (No.BE2014147-2)

  • Perovskite solar cells have been receiving intensive attentions and become a hot research topic in solar cells, due to their high photo-to-electric conversion efficiency, low manufacturing cost and simple fabrication process. In perovskite solar cell, the inorganic-organic hybrid ABX3 material functions as light absorbing layer as well as charge carrier transporting material. Therefore, the properties of ABX3 will directly affect the performance of perovskite solar cell. In this paper, we review on the present methods to tune the structure and properties of inorganic-organic hybrid ABX3 type perovskite photovoltaic material.
  • 加载中
    1. [1]

      [1] Green M A, Ho-Baillie A, Snaith H J. Nat. Photonics, 2014,8(7):506-514

    2. [2]

      [2] Hodes G. Science, 2013,342(6156):317-318

    3. [3]

      [3] Kim H-S, Im S H, Park N-G. J. Phys. Chem. C, 2014,118(11):5615-5625

    4. [4]

      [4] Liu J, Wu Y, Qin C, et al. Energy Environ. Sci., 2014,7(9):2963-2967

    5. [5]

      [5] Kojima A, Teshima K, Shirai Y, et al. J. Am. Chem. Soc., 2009,131(17):6050-6051

    6. [6]

      [6] Kim H S, Lee C R, Im J H, et al. Sci. Rep., 2012,2:591-597

    7. [7]

      [7] Lee M M, Teuscher J, Miyasaka T, et al. Science, 2012,338(6107):643-647

    8. [8]

      [8] Burschka J, Pellet N, Moon S J, et al. Nature, 2013,499(7458):316-319

    9. [9]

      [9] Liu M, Johnston M B, Snaith H J. Nature, 2013,501(7467):395-398

    10. [10]

      [10] Gao P, Grätzel M, Nazeeruddin M K. Energy Environ. Sci., 2014,7(8):2448-2463

    11. [11]

      [11] Zhao Y, Zhu K. J. Phys. Chem. Lett., 2014,5(23):4175-4186

    12. [12]

      [12] Xing G, Mathews N, Sun S, et al. Science, 2013,342(6156):344-347

    13. [13]

      [13] Baikie T, Fang Y, Kadro J M, et al. J. Mater. Chem. A, 2013,1(18):5628

    14. [14]

      [14] Mosconi E, Amat A, Nazeeruddin M K, et al. J. Phys. Chem. C, 2013,117(27):13902-13913

    15. [15]

      [15] Shockley W, Queisser H J. J. Appl. Phys., 1961,32(3):510-519

    16. [16]

      [16] Stranks S D, Eperon G E, Grancini G, et al. Science, 2013, 342(6156):341-344

    17. [17]

      [17] Mailoa J P, Bailie C D, Johlin E C, et al. Appl. Phys. Lett., 2015,106(12):121105

    18. [18]

      [18] Loper P, Niesen B, Soo-Jin M, et al. IEEE J. Photovolt., 2014,4(6):1545-1551

    19. [19]

      [19] YOU Xiao-Zeng(游效曾). Molecular-Based Materials-Opto-Electronic Functional Compounds(分子材料-光电功能化合物). Beijing:Science Press, 2014.

    20. [20]

      [20] Stoumpos C C, Malliakas C D, Kanatzidis M G. Inorg. Chem., 2013,52(15):9019-9038

    21. [21]

      [21] Li C, Lu X, Ding W, et al. Acta Cryst. Sect. B, 2008,64(6):702-707

    22. [22]

      [22] Eperon G E, Stranks S D, Menelaou C, et al. Energy Environ. Sci., 2014,7(3):982

    23. [23]

      [23] Pang S, Hu H, Zhang J, et al. Chem. Mater., 2014,26(3):1485-1491

    24. [24]

      [24] Koh T M, Fu K, Fang Y, et al. J. Phys. Chem. C, 2014,118(30):16458-16462

    25. [25]

      [25] Im J-H, Chung J, Kim S-J, et al. Nanoscale Res. Lett., 2012,7(1):1-7

    26. [26]

      [26] McKinnon N K, Reeves D C, Akabas M H. J. Gen. Physiol., 2011,138(4):453-466

    27. [27]

      [27] Lee J W, Seol D J, Cho A N, et al. Adv. Mater., 2014,26(29):4991-4998

    28. [28]

      [28] Pellet N, Gao P, Gregori G, et al. Angew. Chem. Int. Ed., 2014,53(12):3151-3157

    29. [29]

      [29] Jeon N J, Noh J H, Yang W S, et al. Nature, 2015,517(7535):476-480

    30. [30]

      [30] Chung I, Song J H, Im J, et al. J. Am. Chem. Soc., 2012, 134(20):8579-8587

    31. [31]

      [31] Zhou Y, Garces H F, Senturk B S, et al. Mater. Lett., 2013,110:127-129

    32. [32]

      [32] Chung I, Lee B, He J, et al. Nature, 2012,485(7399):486-489

    33. [33]

      [33] Shum K, Chen Z, Qureshi J, et al. Appl. Phys. Lett., 2010, 96(22):221903

    34. [34]

      [34] Chen Z, Yu C, Shum K, et al. J. Lumin., 2012,132(2):345-349

    35. [35]

      [35] Kumar M H, Dharani S, Leong W L, et al. Adv. Mater., 2014,26(41):7122-7127

    36. [36]

      [36] Choi H, Jeong J, Kim H-B, et al. Nano Energy, 2014,7:80-85

    37. [37]

      [37] Knutson J L, Martin J D, Mitzi D B. Inorg. Chem., 2005,44(13):4699-4705

    38. [38]

      [38] Mitzi D B, Wang S, Feild C A, et al. Science, 1995,267(5203):1473-1476

    39. [39]

      [39] Mitzi D B, Feild C A, Harrison W T A, et al. Nature, 1994, 369(6480):467-469

    40. [40]

      [40] Thiele G, Rotter H W, Schmid K D. Z. Anorg. Allg. Chem., 1987,545(2):148-156

    41. [41]

      [41] Mitzi D B. Chem. Mater., 1996,8(3):791-800

    42. [42]

      [42] Hao F, Stoumpos C C, Cao D H, et al. Nat. Photonics, 2014, 8(6):489-494

    43. [43]

      [43] Hao F, Stoumpos C C, Chang R P H, et al. J. Am. Chem. Soc., 2014,136(22):8094-8099

    44. [44]

      [44] Stoumpos C C, Fraser L, Clark D J, et al. J. Am. Chem. Soc., 2015,137(21):6804-6819

    45. [45]

      [45] Ogomi Y, Morita A, Tsukamoto S, et al. J. Phys. Chem. Lett., 2014,5(6):1004-1011

    46. [46]

      [46] Hayatullah, Murtaza G, Muhammad S, et al. Acta Phys. Pol. A, 2013,124(1):102-107

    47. [47]

      [47] Onoda-Yamamuro N, Matsuo T, Suga H. J. Phys. Chem. Solids, 1992,53(7):935-939

    48. [48]

      [48] Kulkarni S A, Baikie T, Boix P P, et al. J. Mater. Chem. A, 2014,2(24):9221-9225

    49. [49]

      [49] Tanaka K, Takahashi T, Ban T, et al. Solid State Commun., 2003,127(9/10):619-623

    50. [50]

      [50] Im J H, Lee C R, Lee J W, et al. Nanoscale, 2011,3(10):4088-4093

    51. [51]

      [51] Calabrese J, Jones N L, Harlow R L, et al. J. Am. Chem. Soc., 1991,113(6):2328-2330

    52. [52]

      [52] Stranks S D, Eperon G E, Grancini G, et al. Science, 2013,342(6156):341-344

    53. [53]

      [53] Colella S, Mosconi E, Fedeli P, et al. Chem. Mater., 2013, 25(22):4613-4618

    54. [54]

      [54] Qiu J, Qiu Y, Yan K, et al. Nanoscale, 2013,5(8):3245-3248

    55. [55]

      [55] Zhao Y, Zhu K. J. Am. Chem. Soc., 2014,136(35):12241-12244

    56. [56]

      [56] Poglitsch A, Weber D. J. Chem. Phys., 1987,87(11):6373-6378

    57. [57]

      [57] Noh J H, Im S H, Heo J H, et al. Nano Lett., 2013,13(4):1764-1769

    58. [58]

      [58] Edri E, Kirmayer S, Kulbak M, et al. J. Phys. Chem. Lett., 2014,5(3):429-433

    59. [59]

      [59] Jiang Q, Rebollar D, Gong J, et al. Angew. Chem. Int. Ed., 2015,127(26):7727-7730

  • 加载中
    1. [1]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    2. [2]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    3. [3]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    4. [4]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    5. [5]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    6. [6]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    7. [7]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    8. [8]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    9. [9]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    10. [10]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    11. [11]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    12. [12]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    13. [13]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    14. [14]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    15. [15]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    16. [16]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    17. [17]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    18. [18]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    19. [19]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    20. [20]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

Metrics
  • PDF Downloads(0)
  • Abstract views(761)
  • HTML views(158)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return