Citation: WEN Chang-Chun, LEI Wen-Qi, SHEN Xing-Can, JI Shi-Chen, JIANG Bang-Ping, LIANG Hong. Comparative Interaction Mechanisms Between Cells and Gold Nanoparticles Modified with Different Chemical Functional Groups[J]. Chinese Journal of Inorganic Chemistry, ;2015, 31(9): 1903-1912. doi: 10.11862/CJIC.2015.253 shu

Comparative Interaction Mechanisms Between Cells and Gold Nanoparticles Modified with Different Chemical Functional Groups

  • Corresponding author: SHEN Xing-Can,  LIANG Hong, 
  • Received Date: 18 June 2015
    Available Online: 4 August 2015

    Fund Project: 国家自然科学基金(No.21161003,21364002) (No.21161003,21364002)广西自然科学基金杰青(2013GXNSFGA019001) (2013GXNSFGA019001)教育部新世纪优秀人才支持计划(NCET-13-0743) (NCET-13-0743)药用资源化学与药物分子工程教育部重点实验室主任基金(2015-A)资助项目。 (2015-A)

  • Chemical functional groups of -CH3, -COOH and -OH have been introduced to the surface of AuNPs, separately. The AuNPs, Au-OH NPs, Au-COOH NPs and Au-CH3 NPs are spherical with dimension of (15.6±3.2) nm, displaying negative ζ potentials. The cytotoxicity of these AuNPs has been evaluated by methylthiazoletetrazolium (MTT) assay against Hela cells and MCG-803 cells in vitro, separately. MTT data reveal that the surface unmodified AuNPs exhibit low cytotoxicity at the highest concentration of 197 ng·mL-1 for both HeLa and MCG-803 cells in vitro. The surface modified AuNPs can further decrease the inherently cytotoxicity that follows the order AuNPs > Au-CH3 NPs > Au-COOH NPs≈Au-OH NPs. Cell cycle analysis indicates that AuNPs cause cell cycle slightly arrest at the G2/M phase. Micro-Raman spectra of individual living HeLa cells demonstrate that the backbone and nucleic bases of DNA as well as the polar headgroup of phospholipid in cells are the probable target binding sites of AuNPs and Au-CH3 NPs. Whereas, the interfacial interactions are significantly reduced when cells are treated with Au-COOH NPs and Au-OH NPs. Our results on the interaction mechanisms between AuNPs and cells demonstrate that AuNPs modified with surface functional groups of -COOH or -OH can improve their cytocompatibility.
  • 加载中
    1. [1]

      [1] Yeh Y C, Creran B, Rotello V M. Nanoscale, 2012,4:1871-1880

    2. [2]

      [2] Daniel M C, Astruc D. Chem. Rev., 2004,104:293-346

    3. [3]

      [3] Turkevich J, Stevenson P C, Hillier J. Discuss. Faraday Soc., 1951,11:55-75

    4. [4]

      [4] Frens G. Nat. Phys. Sci., 1973,241:20-22

    5. [5]

      [5] Giljohann D A, Seferos, D S, Daniel W L, et al. Angew. Chem. Int. Ed., 2010,49:3280-3294

    6. [6]

      [6] Wang Z, Tan B, Hussain I, et al. Langmuir, 2007,23:885-895

    7. [7]

      [7] Ding Y, Bian X, Yao W, et al. ACS Appl. Mater. Inter., 2010,2:1456-1465

    8. [8]

      [8] Huang P, Bao L, Zhang C, et al. Biomaterials, 2011,32:9796-9809

    9. [9]

      [9] Wu P, Hwang K, Lan T, et al. J. Am. Chem. Soc., 2013,135:5254-5257

    10. [10]

      [10] Bartczak D, Nitti S, Millar T M, et al. Nanoscale, 2012,4:4470-4472

    11. [11]

      [11] Park J, Park J H, Ock K S, et al. J. Colloid Interface Sci., 2011,363:105-113

    12. [12]

      [12] Ghosh R, Singh L C, Shohet J M, et al. Biomaterials, 2013,34:807-816

    13. [13]

      [13] Wang F, Wang Y-C, Dou S, et al. ACS Nano, 2011,5:3679-3692

    14. [14]

      [14] Heo D N, Yang D H, Kwon K. Biomaterials, 2012,33:856-866

    15. [15]

      [15] Mieszawska A J, Mulder W J M, Fayad Z A, et al. Mol. Pharmaceutics, 2013,10:831-847

    16. [16]

      [16] Jans H, Huo Q. Chem. Soc. Rev., 2012,41:2849-2866

    17. [17]

      [17] Pan Y, Neuss S, Leifert A, et al. Small, 2007,3:1941-1949

    18. [18]

      [18] Goodman C M, McCusker C D, Yilmaz T, et al. Bioconjugate Chem., 2004,15:897-900

    19. [19]

      [19] Connor E E, Mwamuka J, Gole A, et al. Small, 2005,1:325-327

    20. [20]

      [20] Pan Y, Leifert A, Ruau D, et al. Small, 2009,5:2067-2076

    21. [21]

      [21] Avvakumova S, Scari G, Porta F. RSC Adv., 2012,2:3658-3661

    22. [22]

      [22] Park J-W, Shumaker-Parry J S. ACS Nano, 2015,9:1665-1682

    23. [23]

      [23] Zhou Y, Wang S X, Zhang K, et al. Angew. Chem., 2008, 120:7564-7566

    24. [24]

      [24] Zhao W, Chiuman W, Lam J C F, et al. J. Am. Chem. Soc., 2008,130:3610-3618

    25. [25]

      [25] Nuzzo R G, Zegarski B R, Dubois L H. J. Am. Chem. Soc., 1987,109:733-740

    26. [26]

      [26] Chen F, Li X, Hihath J, et al. J. Am. Chem. Soc., 2006,128:15874-15881

    27. [27]

      [27] Jiang B P, Zhang L, Zhu Y, et al. J. Mater. Chem. B, 2015,3:3767-3776

    28. [28]

      [28] Jeyaraj M, Arun R, Sathishkumar G, et al. Mater. Res. Bull., 2014,52:15-24

    29. [29]

      [29] Puppels G J, de Mul F F, Otto C, et al. Nature, 1990,347:301-303

    30. [30]

      [30] Konorov S O, Schulze H G, Piret J M, et al. J. Raman Spectrosc., 2011,42:1135-1141

    31. [31]

      [31] Bush S F, Adams R G, Levin I W. Biochemistry, 1980,19:4429-4436

    32. [32]

      [32] Notingher I, Verrier S, Haque S, et al. Biopolymer, 2003,72:230-240

    33. [33]

      [33] Zoladek A, Pascut F C, Patel P, et al. J. Raman Spectrosc., 2011,42:251-258

    34. [34]

      [34] Pyrgiotakis G, Kundakcioglu O E, Pardalos P M, et al. J. Raman Spectrosc., 2011,42:1222-1231

  • 加载中
    1. [1]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    2. [2]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    3. [3]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    4. [4]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    5. [5]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    6. [6]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    7. [7]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    8. [8]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    9. [9]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    10. [10]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    11. [11]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    12. [12]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    13. [13]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    14. [14]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    15. [15]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    16. [16]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    17. [17]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    18. [18]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    19. [19]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    20. [20]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

Metrics
  • PDF Downloads(0)
  • Abstract views(268)
  • HTML views(35)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return