Citation: DENG Rui-Ping, ZHOU Liang, LI Lei-Jiao, ZHANG Hong-Jie. Indium Tin Oxide Anode Self-Assembled Monolayer Modification for Device Performance Improvement of Organic Light-Emitting Diodes[J]. Chinese Journal of Inorganic Chemistry, ;2015, 31(9): 1839-1846. doi: 10.11862/CJIC.2015.242 shu

Indium Tin Oxide Anode Self-Assembled Monolayer Modification for Device Performance Improvement of Organic Light-Emitting Diodes

  • Corresponding author: ZHOU Liang,  ZHANG Hong-Jie, 
  • Received Date: 29 May 2015
    Available Online: 17 July 2015

    Fund Project: 科技部"973"计划(No.2014CB643802) (No.2014CB643802)国家自然科学基金创新群体(No.21221061) (No.21221061)中国科学院青年创新促进会项目(No.2013150) (No.2013150)吉林省科技发展计划项目(No.20130522125JH)资助项目。 (No.20130522125JH)

  • A novel alkoxysilane (Cz-Si) was synthesized and used as an active reagent for self-assembled monolayer (SAM) modification on indium tin oxide (ITO) surface. The as-prepared Cz-Si could modify the ITO surface successfully under the mild atmosphere without any protection, offering simple and easy experimental operation. To investigate the effect of SAM modification on the device performances, based on ITO/SAM anodes, a series of organic light-emitting diodes (OLEDs) were fabricated: ITO/SAM (or unmodified)/NPB (40~50 nm)/Alq3 (60 nm)/LiF (1.0 nm)/Al. The devices show improvement compared to their counterparts with bare ITO anodes. The improvement could be attributed to the modulating of the electronic energy, surface roughness and interface integrity at the ITO/hole transporting layer (HTL) interface by SAM modification.
  • 加载中
    1. [1]

      [1] Kim J S, Cacialli F, Cola A, et al. Appl. Phys. Lett., 1999, 75:19-21

    2. [2]

      [2] Li C N, Kwong C Y, Djurišić A B, et al. Thin Solid Films, 2005,477:57-62

    3. [3]

      [3] Helander M G, Wang Z B, Qiu J, et al. Science, 2011,332:944-947

    4. [4]

      [4] Lee S T, Wang Y M, Hou X Y, et al. Appl. Phys. Lett., 1999, 74:670-672

    5. [5]

      [5] Cui J, Huang Q, Veinot J G C, et al. Adv. Mater., 2002,14:565-569

    6. [6]

      [6] Brown T M, Kim J S, Friend R H, et al. Appl. Phys. Lett., 1999,75:1679-1681

    7. [7]

      [7] Koch N, Kahn A, Ghijsen J, et al. Appl. Phys. Lett., 2003, 82:70-72

    8. [8]

      [8] Tang J X, Li Y Q, Hung L S, et al. Appl. Phys. Lett., 2004, 84:73-75

    9. [9]

      [9] Hsiao C C, Chang C H, Jen T H, et al. Appl. Phys. Lett., 2006,88:033512

    10. [10]

      [10] Luo J X, Xiao L X, Chen Z J, et al. Appl. Phys. Lett., 2008, 93:133301

    11. [11]

      [11] Zhang H M, Fu Q, Zeng W J, et al. J. Mater. Chem. C, 2014,2:9620-9624

    12. [12]

      [12] Zhou L, Zhuang J Y, Tongay S, et al. J. Appl. Phys., 2013, 114:074506

    13. [13]

      [13] Chu T Y, Chen J F, Chen S Y, et al. Appl. Phys. Lett., 2006,89:053503

    14. [14]

      [14] Hotchkiss P J, Jones S C, Paniagua S A, et al. Acc. Chem. Res., 2012,45:337-346

    15. [15]

      [15] Kim D H, Chung C M, Park J W, et al. Ultramicroscopy, 2008,108:1233-1236

    16. [16]

      [16] Jonathan G C, Veinot, Marks T J. Acc. Chem. Res., 2005, 38:632-643

    17. [17]

      [17] Huang Q, Li J, Evmenenko G A, et al. Chem. Mater., 2006, 18:2431-2442

    18. [18]

      [18] Huang Q, Evmenenko G A, Dutta P, et al. J. Am. Chem. Soc., 2005,127:10227-10242

    19. [19]

      [19] Yan H, Lee P, Armstrong N R, et al. J. Am. Chem Soc., 2005,127:3172-3183

    20. [20]

      [20] Huang Q, Cui J, Yan H, et al. Appl. Phys. Lett., 2002,81:3528-3530

    21. [21]

      [21] Huang Q, Evmenenko G, Dutta P, et al. J. Am. Chem. Soc., 2003,125:14704-14705

    22. [22]

      [22] Wu Q H. Crit. Rev. Solid State, 2013,38:318-352

    23. [23]

      [23] HUANG Chun-Hui(黄春辉), LI Fu-You(李富友), HUANG Wei(黄维). Introduction to Organic Light-emitting Materials and Devices(有机电致发光材料与器件导论). Shanghai:Fudan University Press, 2005:111

    24. [24]

      [24] Cheng G, Zhang Y F, Zhao Y, et al. Appl. Phys. Lett., 2005,87:013506

    25. [25]

      [25] Shi J and Tang C W. Appl. Phys. Lett., 2002,80:3201-3203

    26. [26]

      [26] Tutis E, Bussac M N, Zuppiroli L. Appl. Phys. Lett., 1999, 75:3880-3882

    27. [27]

      [27] Wong K W, Yip H L, Luo Y, et al. Appl. Phys. Lett., 2002, 80:2788-2790

  • 加载中
    1. [1]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    2. [2]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    3. [3]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    4. [4]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    5. [5]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    6. [6]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    7. [7]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    8. [8]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    9. [9]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    10. [10]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    11. [11]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    12. [12]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    13. [13]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    14. [14]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    15. [15]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    16. [16]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    17. [17]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    18. [18]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    19. [19]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

Metrics
  • PDF Downloads(0)
  • Abstract views(373)
  • HTML views(48)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return