Citation: YANG Xu, LI Xiao-Long, HU Cai-Hua, SHA Zuo-Liang, YANG Li-Bin. Photocatalytic Water Splitting for Hydrogen Evolution over CuO/TiO2 with Ethylene Glycol as Electron Donor[J]. Chinese Journal of Inorganic Chemistry, ;2015, (11): 2167-2173. doi: 10.11862/CJIC.2015.234 shu

Photocatalytic Water Splitting for Hydrogen Evolution over CuO/TiO2 with Ethylene Glycol as Electron Donor

  • Corresponding author: YANG Li-Bin, 
  • Received Date: 12 May 2015
    Available Online: 9 July 2015

    Fund Project: 国家国际科技合作专项项目(No.2013DFG52490) (No.2013DFG52490)天津市应用基础与前沿技术研究计划重点项目(No.14JCZDJC40900)资助。 (No.14JCZDJC40900)

  • Nanosized TiO2 with deposited CuO(CuO/TiO2) photocatalysts were synthesized by impregnation and thermal decomposition method. The photocatalytic water splitting for hydrogen evolution was investigated over CuO/TiO2 with ethylene glycol as an electron donor. The effect of CuO loading, irradiation time, photocatalyst amount, initial concentration of the ethylene glycol solution on the reaction rate of photocatalytic hydrogen evolution was studied. The possible reaction mechanism was also discussed. The results show that the optimal hydrogen evolution rate reachs 604.5 μmol·h-1·g-1 under irradiation of 300 W Xe lamp. The CuO/TiO2 photocatalyst possesses enhanced optical absorption property, which can help to reduce the electron-hole recombination because the photo-generated electrons in TiO2 can be readily transferred to CuO. We suggest that ethylene glycol as electron donor may be further oxidized via glycolic acid.
  • 加载中
    1. [1]

      [1] Shipway A N, Katz E, Willner I. Phys. Chem. Chem. Phys., 2000(1):18-52

    2. [2]

      [2] Chen X B, Shen S H, Guo L J, et al. Chem. Rev., 2010,110: 6530-6570

    3. [3]

      [3] SU Ya-Ling(苏雅玲), ZHANG Fei-Bai(张飞白), DU Ying- Xun(杜瑛珣), et al. Chinese J. Inorg. Chem.(无机化学学 报), 2009,25(11):1994-2002

    4. [4]

      [4] Le T T, Akhtar M S, Park D M, et al. Appl. Catal. B: Environ., 2012,111-112:397-401

    5. [5]

      [5] Asahi R, Morikawa T, Ohwaki T, et al. Science, 2001,293: 269-271

    6. [6]

      [6] Jang J S, Kim H G, Joshi U A, et al. Int. J. Hydrogen Energy, 2008,33:5975-5980

    7. [7]

      [7] Kim J C, Choi J, Lee Y B, et al. Chem. Commun., 2006,48: 5024-5026

    8. [8]

      [8] Fan X R, Lin B Zh, Liu H, et al. Int. J. Hydrogen Energy, 2013,38:832-839

    9. [9]

      [9] Alex S, Santhosh U, Das S. J. Photochem. Photobiol. A: Chem., 2005,172(1):63-71

    10. [10]

      [10] Kandiel T A, Ismaila A A,Bahnemann D W. Phys. Chem. Chem. Phys., 2011,13:20155-20161

    11. [11]

      [11] GAN Yu-Qin(甘玉琴), ZOU Cui-E(邹翠娥), YANG Ping(杨 平), et al. Petroch. Technol.(石油化工), 2005,34(6):578-581

    12. [12]

      [12] WANG Zhu-Mei(王竹梅), LI Yue-Ming(李月明), YANG Xiao-Jing(杨小静), et al. Chinese J. Inorg. Chem.(无机化学 学报), 2007,23:225-230

    13. [13]

      [13] HAN Yu-Xiang(韩玉香), SHAO Yun(邵芸), WAN Hai-Qin (万海勤), et al. Chinese J. Inorg. Chem.(无机化学学报), 2014,30(3):481-486

    14. [14]

      [14] Xu S, Sun D D. Int. J. Hydrogen Energy, 2009,34:6096-6104

    15. [15]

      [15] Xu S P, Ng J W, Zhang X W, et al. Int. J. Hydrogen Energy, 2010,35:5254-5261

    16. [16]

      [16] Yu J G, Hai Y, Jaroniec M. J. Colloid Interface Sci., 2011, 357:223-228

    17. [17]

      [17] Choi H J, Kang M. Int. J. Hydrogen Energy, 2007,32:3841- 3848

    18. [18]

      [18] JIANG Shao-Feng(蒋少锋), YAO Qian-Ru(姚倩茹), GAO Bi-Fen(高碧芬), et al. Chinese J. Inorg. Chem.(无机化学学 报), 2015,31(3):514-520

    19. [19]

      [19] Khemthong P, Photai P, Grisdanurak N. Int. J. Hydrogen Energy, 2013,38:15992-16001

    20. [20]

      [20] Schwarz P F, Turro N J, Bossmann S H, et al. J. Phys. Chem. B, 1997,101:7127-7134

    21. [21]

      [21] TU Sheng-Hui(涂盛辉), WU Hui(巫辉), LIANG Hai-Ying (梁海营), et al. Chin. J. Chem. Eng.(化工学报), 2013,64(9): 3228-3234

    22. [22]

      [22] Michael R H, Scot T M, Wonyong Choi, et al. Chem. Rev., 1995,95:69-96

    23. [23]

      [23] LI Min(李敏), LI Yue-Xiang(李越湘), PENG Shao-Qin(彭绍 琴), et al. J. Mol. Catal.(China)(分子催化), 2008,22(2):166- 171

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    3. [3]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    4. [4]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    5. [5]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    6. [6]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    7. [7]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    8. [8]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    9. [9]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    10. [10]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    11. [11]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    12. [12]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    13. [13]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    14. [14]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    15. [15]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    16. [16]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    17. [17]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    18. [18]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    19. [19]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    20. [20]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

Metrics
  • PDF Downloads(0)
  • Abstract views(358)
  • HTML views(78)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return