Citation: ZHANG Yong, ZHANG Zhe, DONG Xiong-Wei, YIN Wen-Xing, ZHANG Dan, LIU Chang-Lin. A Thioflavin T-Based Fluorescent Chelator Disaggregated Metal-Aβ Aggregates[J]. Chinese Journal of Inorganic Chemistry, ;2015, 31(8): 1495-1504. doi: 10.11862/CJIC.2015.233 shu

A Thioflavin T-Based Fluorescent Chelator Disaggregated Metal-Aβ Aggregates

  • Corresponding author: LIU Chang-Lin, 
  • Received Date: 31 October 2014
    Available Online: 5 May 2015

    Fund Project: 国家自然科学基金(No.21302059,21271079,21072074) (No.21302059,21271079,21072074)湖北省教育厅青年人才(No.Q20134402)资助项目。 (No.Q20134402)

  • A thioflavin T-based fluorescent chelator 5-amino-2-(benzo[d]thiazol-2-yl)phenol (FC-9) was synthesized and characterized. Its interaction with metal-Aβ aggregates and the change of morphology, conformation, cytotoxicity of the resulting Aβ aggregates were investigated. The results showed that FC-9 can not only recognize different Aβ40/Aβ42 aggregates but also disaggregate metal-Aβ40/Aβ42 aggregates. After the interaction between FC-9 and metal-Aβ40/Aβ42 aggregates, the morphology of aggregates changed from fibril to amorphousness, and their β-sheet conformation was also reduced. Moreover, the cell membrane penetration of FC-9 fulfilled common drug-like criteria, and it can inhibit cytotoxicity of the Cu-Aβ40 aggregates, indicating that it could have potential prospect in the treatment of Alzheimer disease. CCDC: 960540.
  • 加载中
    1. [1]

      [1] Adlard P A, Bush A I. J. Alzheimer's Dis., 2006,10:145-163

    2. [2]

      [2] Hardy J A, Higgins G A. Science, 1992,256:184-185

    3. [3]

      [3] Karran E, Mercken M, Strooper B D. Nature, 2011,10:698-712

    4. [4]

      [4] Bush A I. Trends Neurosci., 2003,26:207-214

    5. [5]

      [5] Lovell M A, Robertson J D, Teesdale W J, et al. J. Neurol. Sci., 1998,158:47-52

    6. [6]

      [6] Bush A I, Tanzi R E. Neurotherapeutics, 2008,5:421-432

    7. [7]

      [7] Perez L R, Franz K J. Dalton Trans., 2010,39:2177-2187

    8. [8]

      [8] Scott L E, Orvig C. Chem. Rev., 2009,109:4885-4910

    9. [9]

      [9] Faller P, Hureau C, Penna G L. Acc. Chem. Res., 2014,47:2252-2259

    10. [10]

      [10] Rodríguez-Rodríguez C, Sánchez de G N, Rimola A, et al. J. Am. Chem. Soc., 2009,131:1436-1451

    11. [11]

      [11] Chen T, Wang X, He Y, et al. Inorg. Chem., 2009,48:5801-5809

    12. [12]

      [12] Zhang Y, Chen L Y, Yin W X, et al. Dalton Trans., 2011, 40:4830-4833

    13. [13]

      [13] Sharma A K, Pavlova S T, Kim J, et al. J. Am. Chem. Soc., 2012,134:6625-6636

    14. [14]

      [14] Savelieff M G, Liu Y Z, Senthamarai R R P, et al. Chem. Commun., 2014,50:5301-5303

    15. [15]

      [15] Kochi A, Eckroat T J, Green K D, et al. Chem. Sci., 2013,4:4137-4145

    16. [16]

      [16] Jones M R, Service E L, Thompson J R, et al. Metallomics, 2012,4:910-920

    17. [17]

      [17] Lee S, Zheng X, Krishnamoorthy J, et al. J. Am. Chem. Soc., 2014,136:299-310

    18. [18]

      [18] Nol S, Cadet S, Gras E, et al. Chem. Soc. Rev., 2013,42:7747-7762

    19. [19]

      [19] Savelie M G, DeToma A S, Derrick J S, et al. Acc. Chem. Res., 2014,47:2475-2482

    20. [20]

      [20] Adlard P A, Sedjahtera A, Gunawan L, et al. Aging Cell, 2014,13:351-359

    21. [21]

      [21] Klunk W E, Wang Y, Huang G F, et al. Life Sci., 2001,69:1471-1484

    22. [22]

      [22] Sheldrick G M. SHELXS-97, A Program for the Solution of Crystal Structures, University of Göttingen, Germany, 1997.

    23. [23]

      [23] Sheldrick G M. SHELXL-97, A Program for the Refinement of Crystal Structures, University of Göttingen, Germany, 1997.

    24. [24]

      [24] Harry L Ⅲ. Protein Sci., 1993,2:404-410

    25. [25]

      [25] Hatcher L Q, Hong L, Bush W D, et al. J. Phys. Chem. B, 2008,112:8160-8164

    26. [26]

      [26] Tugu V, Karafin A, Palumaa P. J. Neurochem., 2008,104:1249-1259

    27. [27]

      [27] Faller P, Hureau C. Dalton Trans., 2009:1080-1094

    28. [28]

      [28] Ha C, Ryu J, Park C B. Biochemistry, 2007,46:6118-6125

    29. [29]

      [29] Huang T H, Yang D S, Plaskos N P, et al. J. Mol. Biol., 2000,297:73-87

    30. [30]

      [30] Lipinski C A, Lombardo F, Dominy B W, et al. Adv. Drug Delivery Rev., 1997,23:3-25

    31. [31]

      [31] Clark D E, Pickett S D. Drug Discov. Today, 2000,5:49-58

  • 加载中
    1. [1]

      Bohan ChenLiming GongJing FengMingji JinLiqing ChenZhonggao GaoWei Huang . Research advances of nanoparticles for CAR-T therapy in solid tumors. Chinese Chemical Letters, 2024, 35(9): 109432-. doi: 10.1016/j.cclet.2023.109432

    2. [2]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    3. [3]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    4. [4]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    5. [5]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    6. [6]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    7. [7]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    8. [8]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    9. [9]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    10. [10]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    11. [11]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

Metrics
  • PDF Downloads(0)
  • Abstract views(509)
  • HTML views(66)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return