Citation: MA Ai-Qing, ZHU Long-Guan. Structural Diversity, Supramolecular Assembly, and Electronic Spectra of Four Silver Coordination Polymers with Same Components of 2-Nitro-1,4-benzenedicarboxylate and 4,4'-Bipyridine[J]. Chinese Journal of Inorganic Chemistry, ;2015, 31(8): 1651-1660. doi: 10.11862/CJIC.2015.227 shu

Structural Diversity, Supramolecular Assembly, and Electronic Spectra of Four Silver Coordination Polymers with Same Components of 2-Nitro-1,4-benzenedicarboxylate and 4,4'-Bipyridine

  • Corresponding author: ZHU Long-Guan, 
  • Received Date: 4 May 2015
    Available Online: 4 June 2015

    Fund Project: 国家自然科学基金(No.21073157)资助项目。 (No.21073157)

  • Four diverse silver coordination polymers with the same components of silver, 4,4'-bipyridine(4,4'-bipy), and 2-nitro-1,4-benzenedicarboxylic acid (2-H2nbdc) have been synthesized, namely {[Ag(4,4'-bipy)]·2-Hnbdc·2H2O·CH3OH}n (1), {[Ag(4,4'-bipy)(2-Hnbdc)]}n (2), {[Ag2(4,4'-bipy)2(2-nbdc)]·2H2O}n (3), and {[Ag2(4,4'-bipy)2(2-nbdc)(H2O)]·2H2O}n (4), and characterized by IR, elemental analysis, TG, UV, fluorescence spectra, and powder X-ray analysis. The single crystal X-ray analysis showed that complex 1 is a 1D cation-anionic polymer, complex 2 is a 1D double chain without any solvent, and complexes 3 and 4 are 1D chain structures. Diverse structures differ with respect to molecular conformation, coordination modes of 2-Hnbdc, and weak interactions. In these complexes there are weak bonds, π-π aromatic stacking interactions, Ag…Ag interaction, and hydrogen bonding. The diverse structures are related to the thermal stability, UV absorptions, and fluorescence emissions. CCDC: 945166, 1; 945167, 2; 945168, 3; 945169, 4.
  • 加载中
    1. [1]

      [1] Kim S N, Kim H Y, Cho H Y, et al. Catal. Today, 2013,204:85-93

    2. [2]

      [2] Opanasenko M, Shamzhy M, Lamac M, et al. Catal. Today, 2013,204:94-100

    3. [3]

      [3] Wan Y, Chen C, Xiao W M, et al. Microporous Mesoporous Mater., 2013,171:9-13

    4. [4]

      [4] Hu X F, Lu Y K, Dai F N, et al. Microporous Mesoporous Mater., 2013,170:36-44

    5. [5]

      [5] Mendes P A P, Ragon F, Rodrigues A E, et al. Microporous Mesoporous Mater., 2013,170:251-258

    6. [6]

      [6] Brand S K, Colon Y J, Getman R B, et al. Microporous Meso-porous Mater., 2013,171:103-109

    7. [7]

      [7] Yang J, Grzech A, Mulder F M, et al. Microporous Mesoporous Mater., 2013,171:65-71

    8. [8]

      [8] Duan L H, Dong X Y, Wu Y Y, et al. J. Porous Mater., 2013, 20:431-440

    9. [9]

      [9] Liu H, Zhao Y G, Zhang Z J, et al. Chem. Asian J., 2013,8:778-785

    10. [10]

      [10] Zheng B S, Yun R R, Bai J F, et al. Inorg. Chem., 2013,52:2823-2829

    11. [11]

      [11] (a)Chen Y M, Cao Q, Gao D D, et al. J. Coord. Chem., 2013, 66:3829-3838

    12. [12]

      (b)Allendorf M D, Bauer C A, Bhakta R K, et al. Chem. Soc. Rev., 2009,38:1330-1352

    13. [13]

      [12] Wang Y, Wu Y C, Xie J, et al. Sens. Actuators B, 2013, 177:1161-1166

    14. [14]

      [13] Robinson A L, Stavila V, Zeitler T R, et al. Anal. Chem., 2012,84:7043-7051

    15. [15]

      [14] Kreno L E, Leong K, Farha O K, et al. Chem. Rev., 2012, 112:1105-1125

    16. [16]

      [15] Deng H X, Doonan C J, Furukawa H, et al. M. Science, 2010,327:846-850

    17. [17]

      [16] Allen F H. Acta Crystallogr., Sect. B:Struct. Sci., 2002,58:380-388

    18. [18]

      [17] Severance R C, Smith M D, zur Loye H C. Inorg. Chem., 2011,50:7931-7933

    19. [19]

      [18] Wang X F, Wang Y, Zhang Y B, et al. Chem. Commun., 2012,48:133-135

    20. [20]

      [19] (a)Chen C L, Kang B S, Su C Y. Aust. J. Chem., 2006,59:3-18

    21. [21]

      (b)Ma A Q, Zhu L G. RSC Adv., 2014,4:14691-14699

    22. [22]

      (c)Hakimi M, Moeini K, Mardani Z, et al. J. Coord. Chem., 2013,66:1129-1141

    23. [23]

      [20] (a)Uchida S, Kawamoto R, Tagami H, et al. J. Am. Chem. Soc., 2008,130:12370-12376

    24. [24]

      (b)Coleman K S, Chamberlayne H T, Turberville S, et al. Dalton Trans., 2003,14:2917-2922

    25. [25]

      [21] (a)Fujii Y, Terao J, Kambe N. Chem. Commun., 2009,9:1115-1117

    26. [26]

      (b)Genuis E D, Kelly J A, Patel M, et al. Inorg. Chem., 2008,47:6184-6194

    27. [27]

      (c)Seward C, Chan J, Song D, et al. Inorg. Chem., 2003,42:1112-1120

    28. [28]

      [22] Akhbari K, Morsali A, Zhu L G. J. Mol. Struct., 2008,891:132-137

    29. [29]

      [23] Khlobystov A N, Blake A J, Champness N R, et al. Coord. Chem. Rev., 2001,222:155-192

    30. [30]

      [24] He H Y, Zhu L G, Ng S W. Acta Crystallogr., 2005,E61:m601-m602

    31. [31]

      [25] CrysAlisPro, Version 1.171.33.52, Oxford Diffraction Ltd., 2009.

    32. [32]

      [26] Sheldrick G M. SHELXL-97, Program for the Refinement of Crystal Structure, University of Göttingen, Germany, 1997.

    33. [33]

      [27] Farrugia L J. J. Appl. Cryst., 1999,32:837-838

    34. [34]

      [28] Dolomanov O V, Bourhis L J, Gildea R J, et al. J. Appl. Cryst., 2009,42:339-341

  • 加载中
    1. [1]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    2. [2]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    3. [3]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    4. [4]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    5. [5]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    6. [6]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    7. [7]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    8. [8]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    9. [9]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    10. [10]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    11. [11]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    12. [12]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    13. [13]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    14. [14]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    15. [15]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    16. [16]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    17. [17]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    18. [18]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    19. [19]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    20. [20]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

Metrics
  • PDF Downloads(0)
  • Abstract views(307)
  • HTML views(40)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return