Citation: TANG Qian, SHI Shan-Shan, CAO Hong-Yu, GUO Xiang-Jin, ZHANG Tao, ZHENG Xue-Fang. Reaction Mechanism of Cytochrome C with NO[J]. Chinese Journal of Inorganic Chemistry, ;2015, 31(8): 1511-1519. doi: 10.11862/CJIC.2015.216 shu

Reaction Mechanism of Cytochrome C with NO

  • Corresponding author: ZHENG Xue-Fang, 
  • Received Date: 5 September 2014
    Available Online: 7 May 2015

    Fund Project: 国家自然科学基金 (No.21271036, 20871024) (No.21271036, 20871024)辽宁省教育厅科学技术研究 (No.L2013470, L2013471)资助项目。 (No.L2013470, L2013471)

  • The research of cytochrome C (Cyt C) reacting with NO donor drugs(proliNONOate) has been focused on electrochemistry and medical treatment, while the study about reacting with NO gas is ignored. The previous study usually concentrated on Q band changes, but the Soret band was hardly mentioned. In this paper, we studied the reaction of two states of Cyt C with NO gas and the dissociation process by Soret band and Q band spectra, using ultraviolet-visible absorption spectra, electron paramagnetic resonance (EPR) spectra, ultraviolet-visible time course absorption spectra and synchronous fluorescence. The spectroscopic data showed that, ferric cytochrome C(Fe(Ⅲ)-Cyt C) and ferrous cytochrome C(Fe(Ⅱ)-Cyt C) could react with NO to convert to cytochrome C coordination compound(Cyt C-NO) with different mechanisms. Fe(Ⅱ)-Cyt C reacting with NO generated Fe(Ⅲ)-Cyt C firstly, then it combined with NO, while Fe(Ⅲ)-Cyt C can combine with NO directly. However, Cyt C-NO is not a stable coordinated macromolecule. With a small amount of NO bubbled into the sample, Cyt C-NO dissociated rapidly with rate constant value of (0.005 07±0.001) s-1, which is one-tenth of Cyt C-NO with NO donor drugs; while under excessive NO gas condition, the dissociation process was prevented. According to the experimental data, the coordination mechanism of the reaction between Cyt C and NO is that gas molecule gets access into the cavity of Heme, making the separation of Fe-S and the formation of Fe-N. Cyt C can react with NO gas directly, the Cyt C-NO is more stable than that reacted with NO donor drugs, and the Soret band have an obvious change. These results will be significant for us to remit the oxidative stress in cells and detect the respiratory enzymes change which could monitor the cell apoptosis and some diseases by NO.
  • 加载中
    1. [1]

      [1] Wittenberg B. J. Physiol. Rev., 1970,50(4):559-636

    2. [2]

      [2] Hills B A. Science, 1973,182(4114):823-825

    3. [3]

      [3] Cassina A M, Hodara R, Souza J M, et al. J. Biol. Chem., 2000,275(28):21409-21415

    4. [4]

      [4] Soldatova A V, Ibrahim M, Olson J S, et al. J. Am. Chem. Soc., 2010,132(13):4614-4625

    5. [5]

      [5] Rong Z, Cooper C E. Adv. Exp. Med. Biol., 2013,789:361-368

    6. [6]

      [6] Larson S K, Dwyer D S, Lo H H, et al. Biochem. Biophys. Res. Commun., 2006,342(3):991-995

    7. [7]

      [7] Godoy L C, Munoz-Pinedo C, Castro L, et al. PNAS USA, 2009,106(8):2653-2658

    8. [8]

      [8] Kanokwiroon K, Chatpun S. J. Asian Trans. Sci., 2014,8(2):100-104

    9. [9]

      [9] Basu S, Keszler A, Azarova N A, et al. Free Radical Biol. Med., 2010,48(2):255-263

    10. [10]

      [10] Basu S, Azarova N A, Font M D, et al. J. Biol. Chem., 2008,283(47):32590-32597

    11. [11]

      [11] Jaeheung Park T L, Manho L. J. Phys. Chem. B, 2013:12039-12050

    12. [12]

      [12] Herold S, Exner M, Nauser T. Biochemistry, 2001,40(11):3385-3395

    13. [13]

      [13] Yukl E T, Vries S, Moënne-Loccoz P. J. Am. Chem. Soc., 2009,131(21):7234-7235

    14. [14]

      [14] Gow A J, Luchsinger B P, Pawloski J R, et al. PNAS USA, 1999,96(16):9027-9032

    15. [15]

      [15] Kruglik S G, Yoo B K, Franzen S, et al. PNAS USA, 2010, 107(31):13678-13683

    16. [16]

      [16] Sharpe M A, Cooper C E. Biochem. J., 1998,332(1):9-19

    17. [17]

      [17] Silkstone R S, Mason M G, Nicholls P, et al. Radical Bio. Med., 2012,52(1):80-87

    18. [18]

      [18] Kim J, Park J, Lee T, et al. J. Phy. Chem. B, 2012,116(46):13663-13671

    19. [19]

      [19] Jitkaew S, Witasp E, Zhang S, et al. J. Leukocyte Biol., 2009,85(3):427-437

    20. [20]

      [20] Kagan V E, Bayir A, Bayir H, et al. Mol. Nutr. Food. Res., 2009,53(1):104-114

    21. [21]

      [21] Kagan V E, Bayir H A, Belikova N A, et al. Free Radical Biol. Med., 2009,46(11):1439-1453

    22. [22]

      [22] Grubina R, Basu S, Tiso M, et al. J. Biol. Chem., 2008,283(6):3628-3638

    23. [23]

      [23] Margoliash E, Frohwirt N. J. Biochem., 1959,71(3):570-572

    24. [24]

      [24] Zhao X J, Sampath V, Caughey W S. Biochem. Biophys. Res. Commun, 1994,204(2):537-543

    25. [25]

      [25] Gray A L, Raphael A L. Proc. Struct. Funct. Genet., 1989,6(3):338-340

    26. [26]

      [26] Stellwagen E, Cass R. Biochem. Biophys. Res. Commun, 1974,60(1):371-375

    27. [27]

      [27] WANG Cui-Ping(王翠平), YE Liu(叶柳), XIE Jian-An (谢建安), et al. Res. Explor. Lab.(实验室研究与探索), 2013,32(5):5-7

    28. [28]

      [28] Kapralov A A, Kurnikov I V, Vlasova I I, et al. Biochem., 2007,49(46):14232-14244

    29. [29]

      [29] Smagghe B J, Trent J T, et al. PLoS One, 2008,3(4):1-10

    30. [30]

      [30] Jayakumari N R, Reghuvaran A C, et al. Biol. Chem., 2014, 08(2):35-44

    31. [31]

      [31] Orii Y, Shimada H. J. Biochem., 1978,84(6):1543-1552

    32. [32]

      [32] Balakrishnan G, Hu Y, Oyerinde O F, et al. J. Am. Chem. Soc., 2007,129(3):504-505

    33. [33]

      [33] JIAN Ju(剑菊), QU Xiao-Gang(曲小刚), LU Tian-Hong (陆天红), et al. Chem. J. Chinese Universities(高等学校化学学报), 1995,16(8):1270-1274

    34. [34]

      [34] George T, Doreen W S, English A M, et al. Biochemistry, 1998,37(7):2004-2016

    35. [35]

      [35] Takano T, Dickerson R E. J. Mol. Biol., 1981,153(1):95-115

  • 加载中
    1. [1]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    2. [2]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    3. [3]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    4. [4]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    5. [5]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    6. [6]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    7. [7]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    8. [8]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    9. [9]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    10. [10]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    11. [11]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    12. [12]

      Lei WanYizhou TongXi LuYao Fu . Cobalt-catalyzed reductive alkynylation to construct C(sp)-C(sp3) and C(sp)-C(sp2) bonds. Chinese Chemical Letters, 2024, 35(7): 109283-. doi: 10.1016/j.cclet.2023.109283

    13. [13]

      Jiao LiChenyang ZhangChuhan WuYan LiuXuejian ZhangXiao LiYongtao LiJing SunZhongmin Su . Defined organic-octamolybdate crystalline superstructures derived Mo2C@C as efficient hydrogen evolution electrocatalysts. Chinese Chemical Letters, 2024, 35(6): 108782-. doi: 10.1016/j.cclet.2023.108782

    14. [14]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    15. [15]

      Kebo XieQian ZhangFei YeJungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028

    16. [16]

      Chen LiZiyuan ZhaoShouyun Yu . Photoredox-catalyzed C-glycosylation of peptides with glycosyl bromides. Chinese Chemical Letters, 2024, 35(6): 109128-. doi: 10.1016/j.cclet.2023.109128

    17. [17]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    18. [18]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    19. [19]

      Yi LiuZhe-Hao WangGuan-Hua XueLin ChenLi-Hua YuanYi-Wen LiDa-Gang YuJian-Heng Ye . Photocatalytic dicarboxylation of strained C–C bonds with CO2 via consecutive visible-light-induced electron transfer. Chinese Chemical Letters, 2024, 35(6): 109138-. doi: 10.1016/j.cclet.2023.109138

    20. [20]

      Jiajun WangGuolin YiShengling GuoJianing WangShujuan LiKe XuWeiyi WangShulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050

Metrics
  • PDF Downloads(1)
  • Abstract views(482)
  • HTML views(115)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return