Citation: WANG Shuang, DING Wei, WANG Ding-Cong, ZHAO De-Zhi. Formation Mechanism of NSA of Secondly Nano Self-Assembly Macropore Alumina Penetrable Pore[J]. Chinese Journal of Inorganic Chemistry, ;2015, 31(8): 1539-1547. doi: 10.11862/CJIC.2015.214 shu

Formation Mechanism of NSA of Secondly Nano Self-Assembly Macropore Alumina Penetrable Pore

  • Corresponding author: DING Wei, 
  • Received Date: 14 February 2015
    Available Online: 20 May 2015

    Fund Project: 中国石油化工集团(总合-JQ1416)资助项目 (总合-JQ1416)中国海洋石油总公司资助项目(No.20140331)。 (No.20140331)

  • The macropore alumina catalysis material FA-06 was prepared by nano self-assembly technique which has a pore volume of 1.39 cm3·g-1, a specific surface area of 297 m2·g-1, most probable pore size of 32.4 nm and a porosity of 81.85%. High concentration pore size distribution of 10~30 nm and 30~60 nm which percentages are 35.61% and 40.88%, respectively. GPC showed that the dispersion and relative molecular weight of RHP are controlled by the amount of PIBSA, which is the formation material of RHP, in order to control the pore sizes. From TEM and SEM, the results showed that the diameters of nano aluminum hydroxide rods are 250~300 nm, and the lengths are 600~800 nm. After calcinating at 550.0℃, the nano alumina rods had the diameter of 150~300 nm, the length of 400~600 nm. XRD results of burned nano self-assembly aluminum hydroxide showed that γ-Al2O3 be formed completely from three types of precursor of nano self-assembly aluminum hydroxide by burning process. Combining with data of TG, the γ-Al2O3 is formed completely due to the decomposition of pseudoboehmite at temperature of 605.0℃, and the total weight loss reaches 61.88%. Based on the above experimental results, the molecular self-assembly and nano self-assembly formation process of reverse supersoluble micelle, aluminum hydroxide and macropore alumina were simulated. Moreover, the formation mechanism of NSA of nano self-assembly macropore alumina with penetrable pores was presented.
  • 加载中
    1. [1]

      [1] Gleiter H, Schimmel T H, Hahn H. Nano Today, 2014,9(1):17-68

    2. [2]

      [2] Minsu K, Eunseuk P, Hyounduk J, et al. Powder Technol., 2014,267:153-160

    3. [3]

      [3] Zhang J H, Xiao X, Nan J M. J. Hazard. Mater., 2010,176(1/2/3):617-622

    4. [4]

      [4] Zahra Z, Ahmad T, Saber T, et al. J. Energ. Chem., 2014,23(1):57-65

    5. [5]

      [5] Chandra B B, Buddhudu S. Physics Procedia, 2013,49:128-136

    6. [6]

      [6] Amiri S, Shokrollashi H. J. Magn. Magn. Mater., 2013,345:18-23

    7. [7]

      [7] Guo Y B, Ren Z, Xiao W, et al. Nano Energy, 2013,2(5):873-881

    8. [8]

      [8] WANG Cheng(王程), SHI Hui-Sheng(施惠生), LI Yan(李艳), et al. Chinese J. Inorg. Chem.(无机化学学报), 2011,27(11):2239-2244

    9. [9]

      [9] Huang B Y, Calvin H, Bartholomew B F, et al. Microporous Mesoporous Mater., 2014,183:37-47

    10. [10]

      [10] Shi Y F, Fu Y Y, Lü H L, et al. Mater. Lett., 2014,125(15):198-201

    11. [11]

      [11] Wu W L, Pan D, Li Y F, et al. Electrochim. Acta, 2015,152(10):126-134

    12. [12]

      [12] Zhang X M, Li Z Y, Yuan X B, et al. Appl. Surf. Sci., 2013, 284(1):732-737

    13. [13]

      [13] Cai H Y, Tang Q W, He B L, et al. Electrochim. Acta, 2014, 121(1):136-142

    14. [14]

      [14] Meng K, Guo H J, Wang Z X, et al. Powder Technol., 2014, 254:403-406

    15. [15]

      [15] Zhang J, Yang D G, Li W J, et al. Electrochim. Acta, 2014, 130(1):699-706

    16. [16]

      [16] Liu Q Y, Zhou H Y, Zhu J Q, et al. Mater. Sci. Eng., C, 2013, 33(8):4944-4951

    17. [17]

      [17] Xiong J Q, Tao J, Xu S J, et al. Mater. Lett., 2015,139(15):173-176

    18. [18]

      [18] Wu Y T, Wang X F. Mater. Lett., 2015,142:109

    19. [19]

      [19] Zhang Y X, Hao X D, Diao Z P. Chin. Chem. Lett., 2014,25(6):874-878

    20. [20]

      [20] YANG Xiao-Hong(杨小红), LIU Chang(刘畅), LIU Jin-Ku (刘金库), et al. Acta Phys.-Chim. Sin.(物理化学学报), 2011,27(12):2939-2945

    21. [21]

      [21] WANG Shi-Min(王世敏), XU Zu-Xun(许祖勋), FU Jing(傅晶). Preparation Technology of Nano Materials(纳米材料制备技术). Beijing:Chemical Industry Press, 2002:244-281

    22. [22]

      [22] Wang D C. Sci. China Ser. B:Chem, 2007,50(1):105-113

    23. [23]

      [23] Wang D C. Sci. China Ser. B:Chem, 2009,52(12):2106-2113

    24. [24]

      [24] WANG Ding-Cong(王鼎聪). Sci. China Ser. B-Chem(中国科学B辑:化学), 2006,36(4):338-346

    25. [25]

      [25] WANG Ding-Cong(王鼎聪), LIU Ji-Rui(刘纪瑞). Petroleum Processing And Petrochemicals(石油炼制与化工), 2010,41(1):31-35

    26. [26]

      [26] ZHANG Kai(张凯), WANG Ding-Cong(王鼎聪). Scientia Sinica Chimica(中国科学:化学), 2013,43(11):1548-1556

    27. [27]

      [27] Zhang J X, Ma P X. Nano Today, 2010,5(4):337-350

    28. [28]

      [28] Qiu F Y, Li L, Liu G, et al. Int. J. Hydrogen Energy, 2013, 38(8):3241-3249

    29. [29]

      [29] Holgado P H, Holgado M J, Maria S, et al. Mater. Chem. Phys., 2015,151(1):140-148

    30. [30]

      [30] Mallaiah M, Sunil K T, Venkat R G. Chem. Eng. Sci., 2013, 104(18):565-573

    31. [31]

      [31] Zhang Y L, Xia J, Feng X, et al. Sens. Actuators, B, 2012, 161(1):587-593

    32. [32]

      [32] ZHANG Jin-Zhong(张金中), WANG Zhong-Lin(王中林), LIU Jun(刘俊), et al. Self-Assembled Nanostructures(自组装纳米结构). Beijing:Chemical Industry Press, 2005:81-91

    33. [33]

      [33] HE You-Zhou(贺有周), LIU Yun(刘云), LIU Peng(刘鹏), et al. Acta Phys.-Chim. Sin.(物理化学学报), 2014,30(8):1501-1508

    34. [34]

      [34] DING Wei(丁巍), WANG Ding-Cong(王鼎聪), ZHAO De-Zhi(赵德智), et al. Chinese J. Inorg. Chem.(无机化学学报), 2014,30(6):1345-1351

  • 加载中
    1. [1]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    2. [2]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    3. [3]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    4. [4]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    5. [5]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    6. [6]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    7. [7]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    8. [8]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    9. [9]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    10. [10]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    11. [11]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    12. [12]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    13. [13]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    14. [14]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    15. [15]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

Metrics
  • PDF Downloads(1)
  • Abstract views(183)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return