Citation: QUAN Wei-Lei, ZHANG Jin-Min, SHEN Jun-Hai, LI Liang-Chao, LI Jia-Jia. Hierarchical ZnO: Architecture, Morphological Control and Photocatalytic Activity[J]. Chinese Journal of Inorganic Chemistry, ;2015, 31(8): 1626-1636. doi: 10.11862/CJIC.2015.212 shu

Hierarchical ZnO: Architecture, Morphological Control and Photocatalytic Activity

  • Corresponding author: LI Liang-Chao, 
  • Received Date: 21 April 2015
    Available Online: 29 June 2015

    Fund Project: 国家自然科学基金(No.21071125) (No.21071125)浙江省大学生科技创新计划(No.2014R404056)资助项目。 (No.2014R404056)

  • Under the green and mild conditions, the hierarchical ZnO was fabricated by the secondary deposition with mixed two zinc salts (zinc source), ionic liquid (surfactant). The composition, structure, morphology, photoluminescence properties and photocatalytic activity of samples were characterized by XRD, IR, SEM, UV-Vis and PL, respectively. The influential factors on sample morphology, such as surfactant, the kind of anion and temperature, were discussed. The results indicate that surfactant has a significant regulation on the morphologies of as-prepared ZnO samples. Furthermore, the anion and temperature also play a critical role in the crystal structure and morphology of ZnO. In addition, all of as-prepared hierarchical ZnO show an excellent photocatalytic activity on methyl orange under UV lamp, where the sample-1 is slightly better than others.
  • 加载中
    1. [1]

      [1] WANG Xin(汪信), LU Lu-De(陆路德). Chinese J. Inorg. Chem.(无机化学学报), 2000,16(2):213-217

    2. [2]

      [2] Ren Y, Ma Z, Bruce P G. Chem. Soc. Rev., 2012,41(14):4909-4927

    3. [3]

      [3] Lee K R, Lee J H, Yoo H I. J. Eur. Ceram. Soc., 2014,34(10):2363-2370

    4. [4]

      [4] ZHENG Zhen-Miao(郑贞苗), TANG Xin-Cun(唐新村), WANG Yang(汪洋), et al. Chinese J. Inorg. Chem.(无机化学学报), 2015,31(4):731-738

    5. [5]

      [5] Yuan C Z, Wu H B, Xie Y, et al. Angew. Chem. Int. Ed., 2014,53(6):1488-1504

    6. [6]

      [6] XU De-Kang(徐德康), LIU Chu-Feng(刘楚枫), YAN Jia-Wei (阎佳薇), et al. Chinese J. Inorg. Chem.(无机化学学报), 2015,31(4):689-695

    7. [7]

      [7] WANG Xin-Juan(王新娟), XIAO Yang(肖洋), XU Fei(徐斐), et al. Chinese J. Inorg. Chem.(无机化学学报), 2014,30(8):1821-1826

    8. [8]

      [8] Sharma R K, Ghose R. Ceram. Int., 2015,41(1):967-975

    9. [9]

      [9] Nevosad A, Hofstatter M, Supancic P, et al. J. Eur. Ceram. Soc., 2014,34(8):1963-1970

    10. [10]

      [10] Qiu Z W, Yang X P, Han J, et al. J. Am. Ceram. Soc., 2014,97(7):2177-2184

    11. [11]

      [11] Ma S S, Li P, Lu C P, et al. J. Hazard. Mater., 2011,192(2):730-740

    12. [12]

      [12] Cho S, Kim S, Jung D W, et al. Nanoscale, 2011,3(9):3841-3848

    13. [13]

      [13] Deng S Z, Fan H M, Wang M, et al. ACS Nano, 2010,4(1):495-505

    14. [14]

      [14] Li H F, Huang Y H, Zhang Y, et al. Cryst. Growth Des., 2009,9(4):1863-1868

    15. [15]

      [15] Shang T M, Sun J H, Zhou Q F, et al. Cryst. Res. Technol., 2007,42(10):1002-1006

    16. [16]

      [16] Sangkhaprom N, Supaphol P, Pavarajarm V. Ceram. Int., 2010,36(1):357-363

    17. [17]

      [17] Gao X F, Jiang L. Nature, 2004,432(7013):36-36

    18. [18]

      [18] Lao J Y, Wen J G, Ren Z F. Nano Lett., 2002,2(11):1287-1291

    19. [19]

      [19] Yang Y H, Wang B, Yang G W. Cryst. Growth Des., 2007,7(7):1242-1245

    20. [20]

      [20] Liu H, Li M, Wei Y, et al. Mater. Lett., 2014,137:300-303

    21. [21]

      [21] Huang Q, Cun T, Zuo W, et al. Appl. Surf. Sci., 2015,332:581-590

    22. [22]

      [22] Shi R, Song X, Li J, et al. Mater. Chem. Phys., 2015,156:61-68

    23. [23]

      [23] Chang G J, Lin S Y, Wu J J. Nanoscale, 2014,6(3):1329-1334

    24. [24]

      [24] Kokotov M, Bar-Nachum S, Edri E, et al. J. Am. Chem. Soc., 2009,132(1):309-314

    25. [25]

      [25] Mclaren A, Valdes-Solis T, Li G, et al. J. Am. Chem. Soc., 2009,131(35):12540-12541

    26. [26]

      [26] Xu S, Wang Z L. Nano Res., 2011,4(11):1013-1098

    27. [27]

      [27] Zhou X, Xie Z X, Jiang Z Y, et al. Chem. Commun., 2005, 44:5572-5574

    28. [28]

      [28] Wang L, Chang L X, Wei L Q, et al. J. Mater. Chem., 2011, 21(39):15732-15740

    29. [29]

      [29] SHEN Jun-Hai(沈俊海), LI Jia-Jia(李佳佳), LI Liang-Chao (李良超), et al. Chem. J. Chinese Universites(高等学校化学学报), 2014,35(6):1135-1141

    30. [30]

      [30] Huddleston J G, Willauer H D. Chem. Commun., 1998,16:1765-1766

    31. [31]

      [31] Brindaban C R, Subhash B. Org. Lett., 2005,7(14):3049-3052

    32. [32]

      [32] Fernandes D M, Silva R, Hechenleitner A A, et al. Mater. Chem. Phys., 2009,115(1):110-115

    33. [33]

      [33] Xing R M, Zhu J H, Liu Q W, et al. Chem. Res., 2012,23(5):57-60

    34. [34]

      [34] JING Li-Qiang(井立强), YUAN Fu-Long(袁福龙), HOU Hai-Ou(侯海鸥), et al. Sci. China Ser. B:Chem.(中国科学B辑:化学), 2004,34(4):310-314

    35. [35]

      [35] HOU Chun-Yan(侯春燕). Thesis for the Master of Dalian Maritime University(大连海事大学硕士论文). 2006.

  • 加载中
    1. [1]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    2. [2]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    3. [3]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    4. [4]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    5. [5]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    6. [6]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    7. [7]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    8. [8]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    9. [9]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    10. [10]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    11. [11]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    12. [12]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    13. [13]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    14. [14]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    15. [15]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    16. [16]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    17. [17]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    18. [18]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    19. [19]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    20. [20]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

Metrics
  • PDF Downloads(0)
  • Abstract views(261)
  • HTML views(40)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return