Citation: YE Qin, XIANG Jun, LI Jia-Le, LIU Min, XU Jia-Huan, SHEN Xiang-Qian. Fabrication and Microwave Absorption Properties of NZFO-PZT Magnetoelectric Composite Nanofibers[J]. Chinese Journal of Inorganic Chemistry, ;2015, 31(7): 1296-1304. doi: 10.11862/CJIC.2015.204 shu

Fabrication and Microwave Absorption Properties of NZFO-PZT Magnetoelectric Composite Nanofibers

  • Corresponding author: XIANG Jun,  XU Jia-Huan, 
  • Received Date: 14 April 2015
    Available Online: 29 May 2015

    Fund Project: 国家自然科学基金(No.11204108) (No.11204108)中国博士后科学基金(No.2013M540418) (No.2013M540418)江苏省博士后科研资助计划(No.1301055B)资助项目。 (No.1301055B)

  • (1-x)Ni0.5Zn0.5Fe2O4-(x)Pb(Zr0.52Ti0.48)O3 (known simply as (1-x)NZFO-(x)PZT, x=0.1, 0.2, 0.3, 0.4, and 0.5) magnetoelectric composite nanofibers have been successfully fabricated using the electrospinning method. The effects of PZT content on structures, electromagnetic characteristics and microwave absorption properties of the resultant products have been investigated in detail. It is found that all the as-prepared composites nanofibers are composed of both spinel-structured NZFO and perovskite-structured PZT phases. The appropriate incorporation of PZT phase in the composite nanofibers can improve the electromagnetic impedance matching and attenuation characteristics of the corresponding microwave absorbing coatings due to the synergistic effects between magnetic loss of NZFO and dielectric loss of PZT and the enhanced interfacial effects, and consequently boost their microwave absorption performances. The (1-x)NZFO-(x)PZT composite nanofiber/silicone microwave absorbing coatings with x=0.3 and 0.4 exhibit the strongest microwave absorption ability in the low- and high-frequency ranges, respectively. When the coating thickness is between 2.5 and 5.0 mm, the minimum reflection loss (RL) value of the x=0.3 sample is -77.2 dB at 6.1 GHz and the effective absorption bandwidth with RL below -10 dB reaches 11.2 GHz covering the 2.8~12.9 and 16.9~18 GHz frequency ranges. While for x=0.4 sample, an optimal RL value of -37.6 dB is observed at 18 GHz and the effective absorption bandwidth is up to 12.5 GHz ranging from 3.3 to 12.5 and 14.7 to 18 GHz.
  • 加载中
    1. [1]

      [1] Xia T, Zhang C, Oyler N A, et al. Adv. Mater., 2013, 25:6905-6910

    2. [2]

      [2] CHEN Xue-Guan(陈雪刚), YE Ying(叶瑛), CHEN Ji-Peng (程继鹏). J. Inorg. Mater.(无机材料学报), 2011, 26(5):449-457

    3. [3]

      [3] Zhang X F, Guo J J, Qin G W. Appl. Phys. Lett., 2014, 104: 252404

    4. [4]

      [4] Xiang J, Li J L, Zhang X H, et al. J. Mater. Chem. A, 2014, 2:16905-16914

    5. [5]

      [5] Jiang J J, Li D, Geng D Y, et al. Nanoscale, 2014, 6:3967-3971

    6. [6]

      [6] Vinayasree S, Soloman M A, Sunny V, et al. Compos. Sci. Technol., 2013, 82:69-75

    7. [7]

      [7] Qiu J, Qiu T T. Carbon, 2015, 81:20-28

    8. [8]

      [8] Liu J W, Che R C, Chen H J, et al. Small, 2012, 8:1214-1221

    9. [9]

      [9] XIANG Jun(向军), ZHANG Xiong-Hui(张雄辉), YE Qin(叶芹), et al. Chem. J. Chinese Universities(高等学校化学学报), 2014, 35(7):1379-1387

    10. [10]

      [10] Ramesh R, Spaldin N A. Nature Mater., 2007, 6:21-29

    11. [11]

      [11] Nan C W, Bichurin M I, Dong S X, et al. J. Appl. Phys., 2008, 103:031101

    12. [12]

      [12] Ma J, Hu J M, Li Z, et al. Adv. Mater., 2011, 23:1062-1087

    13. [13]

      [13] Mandal A, Das C K. J. Electron. Mater., 2013, 42:121-128

    14. [14]

      [14] Mandal A, Das C K. J. Appl. Ploym. Sci., 2014, 131:39926

    15. [15]

      [15] Liu J R, Itoh M, Terada M, et al. Appl. Phys. Lett., 2007, 91:093101

    16. [16]

      [16] Huang X G, Zhang J, Xiao S R, et al. J. Am Ceram. Soc., 2014, 97:1363-1366

    17. [17]

      [17] Yang J, Zhang J, Liang C Y, et al. ACS Appl. Mater. Interfaces, 2013, 5:7146-7151

    18. [18]

      [18] LIU Gu(刘顾), WANG Liu-Ying(汪刘应), CHEN Jian-Liang (程建良), et al. J. Mater. Eng.(材料工程), 2015, 43(1):104-112

    19. [19]

      [19] Wu H, Pan W, Lin D D, et al. J. Adv. Ceram., 2012, 1(1):2-23

    20. [20]

      [20] Wang Z L, Liu X J, Lv M F, et al. J. Phys. Chem. C, 2008, 112:15171-15175

    21. [21]

      [21] Albuquerque A S, Ardisson J D, Macedo W A A, et al. J. Appl. Phys., 2000, 87:4352-4357

    22. [22]

      [22] Yao D S, Ge S H, Zhou X Y, et al. J. Appl. Phys., 2008, 104:013902

    23. [23]

      [23] Guan P F, Zhang X F, Guo J J. Appl. Phys. Lett., 2012, 101: 153108

    24. [24]

      [24] Qing Y C, Zhou W C, Luo F, et al. J. Magn. Magn. Mater., 2011, 323:600-606

    25. [25]

      [25] Shang R X, Zhang Y, Yan L G, et al. J. Phys. D: Appl. Phys., 2014, 47:065001

    26. [26]

      [26] Liu X G, Ou Z Q, Geng D Y, et al. Carbon, 2010, 48:891-897

    27. [27]

      [27] REN Li(任丽), ZHANG Rong-Fen(张荣芬), LI Zheng(李铮), et al. Electro. Compon. Mater.(电子元件与材料), 2014, 33 (7):23-28

    28. [28]

      [28] Cao J, Fu W Y, Yang H B, et al. J. Phys. Chem. B, 2009, 113:4642-4647

    29. [29]

      [29] Wang G Q, Ma L X, Chang Y F, et al. Appl. Surf. Sci., 2012, 258:3962-3966

    30. [30]

      [30] Kong L B, Li Z W, Liu L, et al. Int. Mater. Rev., 2013, 58: 203-259

    31. [31]

      [31] Chu Y Q, Zhang B, Xiang J. Adv. Mater. Res., 2013, 631-632:429-433

    32. [32]

      [32] Zhu Y F, Zhang L, Natsuki T, et al. ACS Appl. Mater. Interfaces, 2012, 4:2101-2106

    33. [33]

      [33] Sun G B, Dong B X, Cao M H, et al. Chem. Mater., 2011, 23:1587-1593

    34. [34]

      [34] Meng X G, Wan Y Z, Li Q Y, et al. Appl. Surf. Sci., 2011, 257:10808-10814

    35. [35]

      [35] Ma Z, Cao C T, Liu Q F, et al. Chin. Phys. Lett., 2012, 29: 038401

  • 加载中
    1. [1]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    2. [2]

      Mingjie LeiWenting HuKexin LinXiujuan SunHaoshen ZhangYe QianTongyue KangXiulin WuHailong LiaoYuan PanYuwei ZhangDiye WeiPing Gao . Accelerating the reconstruction of NiSe2 by Co/Mn/Mo doping for enhanced urea electrolysis. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-0. doi: 10.1016/j.actphy.2025.100083

    3. [3]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    4. [4]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    5. [5]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    6. [6]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    7. [7]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

    8. [8]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    9. [9]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    10. [10]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    11. [11]

      Ximeng CHIJianwei WEIYunyun WANGWenxin DENGJiayi DAIXu ZHOU . First-principles study of the electronic structure and optical properties of Au and I doped-inorganic lead-free double perovskite Cs2NaBiCl6. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1371-1379. doi: 10.11862/CJIC.20240401

    12. [12]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    13. [13]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    14. [14]

      Ying LiangYuheng DengShilv YuJiahao ChengJiawei SongJun YaoYichen YangWanlei ZhangWenjing ZhouXin ZhangWenjian ShenGuijie LiangBin LiYong PengRun HuWangnan Li . Machine learning-guided antireflection coatings architectures and interface modification for synergistically optimizing efficient and stable perovskite solar cells. Acta Physico-Chimica Sinica, 2025, 41(9): 100098-0. doi: 10.1016/j.actphy.2025.100098

    15. [15]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    16. [16]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    17. [17]

      Zhangshu Wang Xin Zhang Jixin Han Xuebing Fang Xiufeng Zhao Zeyu Gu Jinjun Deng . Exploration and Design of Experimental Teaching on Ultrasonic-Enhanced Synergistic Treatment of Ternary Composite Flooding Produced Water. University Chemistry, 2024, 39(5): 116-124. doi: 10.3866/PKU.DXHX202310056

    18. [18]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    19. [19]

      Jian Li Yu Zhang Rongrong Yan Kaiyuan Sun Xiaoqing Liu Zishang Liang Yinan Jiao Hui Bu Xin Chen Jinjin Zhao Jianlin Shi . 高效靶向示踪钙钛矿纳米系统光电增效抗肿瘤. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-. doi: 10.1016/j.actphy.2024.100042

    20. [20]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

Metrics
  • PDF Downloads(0)
  • Abstract views(327)
  • HTML views(29)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return