Citation: YE Qin, XIANG Jun, LI Jia-Le, LIU Min, XU Jia-Huan, SHEN Xiang-Qian. Fabrication and Microwave Absorption Properties of NZFO-PZT Magnetoelectric Composite Nanofibers[J]. Chinese Journal of Inorganic Chemistry, ;2015, 31(7): 1296-1304. doi: 10.11862/CJIC.2015.204 shu

Fabrication and Microwave Absorption Properties of NZFO-PZT Magnetoelectric Composite Nanofibers

  • Corresponding author: XIANG Jun,  XU Jia-Huan, 
  • Received Date: 14 April 2015
    Available Online: 29 May 2015

    Fund Project: 国家自然科学基金(No.11204108) (No.11204108)中国博士后科学基金(No.2013M540418) (No.2013M540418)江苏省博士后科研资助计划(No.1301055B)资助项目。 (No.1301055B)

  • (1-x)Ni0.5Zn0.5Fe2O4-(x)Pb(Zr0.52Ti0.48)O3 (known simply as (1-x)NZFO-(x)PZT, x=0.1, 0.2, 0.3, 0.4, and 0.5) magnetoelectric composite nanofibers have been successfully fabricated using the electrospinning method. The effects of PZT content on structures, electromagnetic characteristics and microwave absorption properties of the resultant products have been investigated in detail. It is found that all the as-prepared composites nanofibers are composed of both spinel-structured NZFO and perovskite-structured PZT phases. The appropriate incorporation of PZT phase in the composite nanofibers can improve the electromagnetic impedance matching and attenuation characteristics of the corresponding microwave absorbing coatings due to the synergistic effects between magnetic loss of NZFO and dielectric loss of PZT and the enhanced interfacial effects, and consequently boost their microwave absorption performances. The (1-x)NZFO-(x)PZT composite nanofiber/silicone microwave absorbing coatings with x=0.3 and 0.4 exhibit the strongest microwave absorption ability in the low- and high-frequency ranges, respectively. When the coating thickness is between 2.5 and 5.0 mm, the minimum reflection loss (RL) value of the x=0.3 sample is -77.2 dB at 6.1 GHz and the effective absorption bandwidth with RL below -10 dB reaches 11.2 GHz covering the 2.8~12.9 and 16.9~18 GHz frequency ranges. While for x=0.4 sample, an optimal RL value of -37.6 dB is observed at 18 GHz and the effective absorption bandwidth is up to 12.5 GHz ranging from 3.3 to 12.5 and 14.7 to 18 GHz.
  • 加载中
    1. [1]

      [1] Xia T, Zhang C, Oyler N A, et al. Adv. Mater., 2013, 25:6905-6910

    2. [2]

      [2] CHEN Xue-Guan(陈雪刚), YE Ying(叶瑛), CHEN Ji-Peng (程继鹏). J. Inorg. Mater.(无机材料学报), 2011, 26(5):449-457

    3. [3]

      [3] Zhang X F, Guo J J, Qin G W. Appl. Phys. Lett., 2014, 104: 252404

    4. [4]

      [4] Xiang J, Li J L, Zhang X H, et al. J. Mater. Chem. A, 2014, 2:16905-16914

    5. [5]

      [5] Jiang J J, Li D, Geng D Y, et al. Nanoscale, 2014, 6:3967-3971

    6. [6]

      [6] Vinayasree S, Soloman M A, Sunny V, et al. Compos. Sci. Technol., 2013, 82:69-75

    7. [7]

      [7] Qiu J, Qiu T T. Carbon, 2015, 81:20-28

    8. [8]

      [8] Liu J W, Che R C, Chen H J, et al. Small, 2012, 8:1214-1221

    9. [9]

      [9] XIANG Jun(向军), ZHANG Xiong-Hui(张雄辉), YE Qin(叶芹), et al. Chem. J. Chinese Universities(高等学校化学学报), 2014, 35(7):1379-1387

    10. [10]

      [10] Ramesh R, Spaldin N A. Nature Mater., 2007, 6:21-29

    11. [11]

      [11] Nan C W, Bichurin M I, Dong S X, et al. J. Appl. Phys., 2008, 103:031101

    12. [12]

      [12] Ma J, Hu J M, Li Z, et al. Adv. Mater., 2011, 23:1062-1087

    13. [13]

      [13] Mandal A, Das C K. J. Electron. Mater., 2013, 42:121-128

    14. [14]

      [14] Mandal A, Das C K. J. Appl. Ploym. Sci., 2014, 131:39926

    15. [15]

      [15] Liu J R, Itoh M, Terada M, et al. Appl. Phys. Lett., 2007, 91:093101

    16. [16]

      [16] Huang X G, Zhang J, Xiao S R, et al. J. Am Ceram. Soc., 2014, 97:1363-1366

    17. [17]

      [17] Yang J, Zhang J, Liang C Y, et al. ACS Appl. Mater. Interfaces, 2013, 5:7146-7151

    18. [18]

      [18] LIU Gu(刘顾), WANG Liu-Ying(汪刘应), CHEN Jian-Liang (程建良), et al. J. Mater. Eng.(材料工程), 2015, 43(1):104-112

    19. [19]

      [19] Wu H, Pan W, Lin D D, et al. J. Adv. Ceram., 2012, 1(1):2-23

    20. [20]

      [20] Wang Z L, Liu X J, Lv M F, et al. J. Phys. Chem. C, 2008, 112:15171-15175

    21. [21]

      [21] Albuquerque A S, Ardisson J D, Macedo W A A, et al. J. Appl. Phys., 2000, 87:4352-4357

    22. [22]

      [22] Yao D S, Ge S H, Zhou X Y, et al. J. Appl. Phys., 2008, 104:013902

    23. [23]

      [23] Guan P F, Zhang X F, Guo J J. Appl. Phys. Lett., 2012, 101: 153108

    24. [24]

      [24] Qing Y C, Zhou W C, Luo F, et al. J. Magn. Magn. Mater., 2011, 323:600-606

    25. [25]

      [25] Shang R X, Zhang Y, Yan L G, et al. J. Phys. D: Appl. Phys., 2014, 47:065001

    26. [26]

      [26] Liu X G, Ou Z Q, Geng D Y, et al. Carbon, 2010, 48:891-897

    27. [27]

      [27] REN Li(任丽), ZHANG Rong-Fen(张荣芬), LI Zheng(李铮), et al. Electro. Compon. Mater.(电子元件与材料), 2014, 33 (7):23-28

    28. [28]

      [28] Cao J, Fu W Y, Yang H B, et al. J. Phys. Chem. B, 2009, 113:4642-4647

    29. [29]

      [29] Wang G Q, Ma L X, Chang Y F, et al. Appl. Surf. Sci., 2012, 258:3962-3966

    30. [30]

      [30] Kong L B, Li Z W, Liu L, et al. Int. Mater. Rev., 2013, 58: 203-259

    31. [31]

      [31] Chu Y Q, Zhang B, Xiang J. Adv. Mater. Res., 2013, 631-632:429-433

    32. [32]

      [32] Zhu Y F, Zhang L, Natsuki T, et al. ACS Appl. Mater. Interfaces, 2012, 4:2101-2106

    33. [33]

      [33] Sun G B, Dong B X, Cao M H, et al. Chem. Mater., 2011, 23:1587-1593

    34. [34]

      [34] Meng X G, Wan Y Z, Li Q Y, et al. Appl. Surf. Sci., 2011, 257:10808-10814

    35. [35]

      [35] Ma Z, Cao C T, Liu Q F, et al. Chin. Phys. Lett., 2012, 29: 038401

  • 加载中
    1. [1]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    2. [2]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    3. [3]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    4. [4]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    5. [5]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    6. [6]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    7. [7]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    8. [8]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    9. [9]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    10. [10]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    11. [11]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    12. [12]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    13. [13]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    14. [14]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    15. [15]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    16. [16]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    17. [17]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    18. [18]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    19. [19]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    20. [20]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

Metrics
  • PDF Downloads(0)
  • Abstract views(211)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return