Citation: WEI Yuan, KANG Shi-Zhao, LI Xiang-Qing, QIN Li-Xia, MU Jin. Effect of Cu-Ni Cocatalyst on Visible Photocatalytic Activity of TiO2 for Phenol Preparation[J]. Chinese Journal of Inorganic Chemistry, ;2015, 31(8): 1581-1589. doi: 10.11862/CJIC.2015.198 shu

Effect of Cu-Ni Cocatalyst on Visible Photocatalytic Activity of TiO2 for Phenol Preparation

  • Corresponding author: KANG Shi-Zhao, 
  • Received Date: 16 March 2015
    Available Online: 19 May 2015

    Fund Project: 国家自然科学基金项目(No.21301118) (No.21301118)上海市教委科技创新重点项目(No.13ZZ135)资助。 (No.13ZZ135)

  • The Cu-Ni co-modified TiO2-based photocatalytic system was fabricated using TiO2 nanoparticles as the main catalyst component by an impregnation process followed by a reduction procedure. The effect of Cu-Ni cocatalyst on the visible photocatalytic activity of TiO2 for phenol preparation was studied using benzene as the starting material and hydrogen peroxide as the oxidant. The action mechanism of Cu-Ni cocatalyst for the photocatalytic activity of TiO2 nanoparticles is discussed. The results show that the pure TiO2 nanoparticles do not have photocatalytic activity for the phenol production from benzene under visible light irradiation. In contrast, the photocatalytic activity of TiO2 nanoparticles can be enhanced obviously due to the introduction of Cu and Ni. The yield of phenol is 18% when the Cu-Ni co-modified TiO2 nanoparticles are used as a photocatalyst. Moreover, there exists noticeable synergistic effect between Cu and Ni. The Cu-Ni co-modified TiO2 nanoparticles exhibit much higher photocatalytic activity in comparison with that of the Cu or Ni alone modified ones due to the synergistic effect. These results imply that the cheap cocatalyst with outstanding performance than that of noble metals may be prepared by taking advantage of the synergistic effect between various metals.
  • 加载中
    1. [1]

      [1] Yang H, Wu Q, Li J, et al. Appl. Catal. A, 2013,457:21-25

    2. [2]

      [2] Koekkoek A J J, Kim W, Degirmenci V, et al. J. Catal., 2013,299:81-89

    3. [3]

      [3] Guo C, Du W D, Chen G, et al. Catal. Commun., 2013,37:19-22

    4. [4]

      [4] Yuan C Y, Gao X H, Pan Z S, et al. Catal. Commun., 2015, 58:215-218

    5. [5]

      [5] Schmid R J. Appl. Catal. A, 2005,280:89-103

    6. [6]

      [6] Hu L Y, Yue B, Chen X Y, et al. Catal. Commun., 2014,43:179-183

    7. [7]

      [7] Xu D, Jia L H, Guo X F. Chinese J. Catal., 2013,34:341-350

    8. [8]

      [8] Park H, Choi W. Catal. Today, 2005,101:291-297

    9. [9]

      [9] Devaraji P, Sathu N K, Gopinath C S. ACS Catal., 2014,4:2844-2853

    10. [10]

      [10] Yuzawa H, Aoki M, Otake K, et al. J. Phys. Chem. C, 2012, 116:25376-25387

    11. [11]

      [11] Ide Y, Matsuoka M, Ogawa M. J. Am. Chem. Soc., 2010, 132:16762-16764

    12. [12]

      [12] Zheng Z K, Huang B B, Qin X Y, et al. J. Mater. Chem., 2011,21:9079-9087

    13. [13]

      [13] Riaz N, Chong F K, Dutta B K, et al. Chem. Eng. J., 2012, 185-186:108-119

    14. [14]

      [14] Gao W L, Jin R C, Chen J X, et al. Catal. Today, 2004,90:331-336

    15. [15]

      [15] Tian H M, Kang S Z, Li X, et al. Sol. Energy Mater. Sol. Cells, 2015,134:309-317

    16. [16]

      [16] Lu H Q, Zhao B B, Pan R L, et al. RSC Adv., 2014,4:1128-1132

    17. [17]

      [17] WU Yu-Qi(吴玉琪), LÜ Gong-Xuan(吕功煊), LI Shu-Ben (李树本). Chinese J. Inorg. Chem.(无机化学学报), 2010,26(3):476-482

    18. [18]

      [18] YANG Li-Juan(杨立娟), LI Xiao-Wei(李晓伟), LIU Bin(刘斌), et al. Chinese J. Inorg. Chem.(无机化学学报), 2007, 23(10):1717-1722

    19. [19]

      [19] Behnajady M A, Eskandarloo H. Chem. Eng. J., 2013,228:1207-1213

    20. [20]

      [20] Li L Y, Xu Z Y, Liu F L, et al. J. Photochem. Photobiol. A, 2010,212:113-211

    21. [21]

      [21] Chen H, Zhou S X, Wu L M. ACS Appl. Mater. Interfaces, 2014,6:8621-8630

    22. [22]

      [22] Lee J W, Ahn T, Soundararajan D, et al. Chem. Commun., 2011,47:6305-6307

    23. [23]

      [23] Marino T, Molinari R, Garcia H. Catal. Today, 2013,206:40-45

    24. [24]

      [24] Sonawane R S, Dongare M K. J. Mol. Catal. A, 2006,243:68-76

    25. [25]

      [25] Jiang W F, Wang W, Wang H L, et al. Catal. Lett., 2009, 130:463-469

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    3. [3]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    4. [4]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    5. [5]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    6. [6]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    7. [7]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    8. [8]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    9. [9]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    10. [10]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    11. [11]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    12. [12]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    13. [13]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    14. [14]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    15. [15]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    16. [16]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    17. [17]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    18. [18]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    19. [19]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    20. [20]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

Metrics
  • PDF Downloads(0)
  • Abstract views(169)
  • HTML views(24)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return