Citation:
BAI Shu-Ming, TIAN Jian-Hua, MA Huan-Mei, ZHU Kun-Lei, SHAN Zhong-Qiang. Preparation and Photoelectric Performance of Mn-Doped-CdSSe2 Quantum Dots Sensitized Electrode[J]. Chinese Journal of Inorganic Chemistry,
;2015, 31(7): 1365-1372.
doi:
10.11862/CJIC.2015.197
-
Sodium sulfide-selenium prepared by adding Se powder into the Na2S methanol-water solution was used as the anionic precursor, and the methanol-water solution of Cd(NO3)2 and Mn(CH3COO)2 was used as the cationic precursor, respectively. Then, cadmium sulfide-selenium quantum dots sensitized TiO2 photoanodes (CdSSe2/TiO2) and Mn2+ doped cadmium sulfide-selenium quantum dots sensitized TiO2 photoanodes (Mn-CdSSe2/TiO2) were successfully prepared by the successive ionic layer adsorption and reaction (SILAR) for Quantum dots solar cell (QDSC). The Raman spectrum, XPS were applied to analyze the chemical bonds of the Na2SSe2 precursors. EDX and UV-Vis were investigated the composition and light absorption property of Mn-CdSSe2/TiO2 photoanode. J-V curves and IPCE were used to characterize photovoltaic performance of the as-prepared CdS/TiO2, CdSSe2/TiO2 and Mn-CdSSe2/TiO2 photoanodes. The results reveals that the Mn-CdSSe2/TiO2 photoanode with enhanced energy conversion efficiency has been fabricated by SILAR method using the anionic precursors prepared with 0.12 mol·L-1 Se and 0.5 mol·L-1 Na2S, the cationic precursor of 0.5 mol·L-1 Cd2+ and 0.3 mol·L-1 Mn2+. Compared with the CdSSe2/TiO2 and CdS/TiO2 photoanodes, the efficiency of the Mn-CdSSe2/TiO2 photoanode is increased by 90% and 247%, separately.
-
-
-
[1]
[1] HAN ZhiZhong(韩志钟), WEI Li-Yuan(韦力瑗), GUO Ye (郭晔), et al. Chinese J. Inorg. Chem.(无机化学学报), 2013, 29(9):1856-1862
-
[2]
[2] Nozik A J. Physica E, 2002, 14(1):115-120
-
[3]
[3] CHENG Kan(成戡), FANG Zheng(方正), MA Yun-Fei (马云飞), et al. Chinese J. Inorg. Chem. (无机化学学报), 2013, 29(2):326-332
-
[4]
[4] Lee W, Kwak W C, Min S K, et al. Electrochem. Commun., 2008, 10(11):1699-1702
-
[5]
[5] Huang Z, Zou X, Zhou H. Mater. Lett., 2013, 95:139-141
-
[6]
[6] Lee J W, Son D Y, Ahn T K, et al. Sci. Rep., 2013, 3
-
[7]
[7] Santra P K, Kamat P V. J. Am. Chem. Soc., 2012, 134(5): 2508-2511
-
[8]
[8] Lee Y L, Chang C H. J. Power Sources, 2008, 185(1):584-588
-
[9]
[9] Haase V, Kirschstein G, Rieger H, et al. Gemlin Handbook of Inorganic Chemistry, Selen, Suppl A3. NewYork: Springer Berlin Heidelberg. 1981:318-319
-
[10]
[10] Machado K D, Dubiel A S, Deflon E, et al. Solid State Commun., 2010, 150(29): 1359-1363
-
[11]
[11] Fan H M, Ni Z H, Feng Y P, et al. Appl. Phys. Lett., 2007, 91(17):171911
-
[12]
[12] Pashutski A, Folman M. Surf. Sci., 1989, 216(3):395-408
-
[13]
[13] Palchan I, Crespin M, Estrade-Szwarckopf H, et al. Chem. Phys. Lett., 1989, 157(4):321-327
-
[14]
[14] Shul'ga Y M, Rubtsov V I, Vasilets V N, et al. Synth. Met., 1995, 70(1):1381-1382
-
[15]
[15] Tkachenko O P, Shpiro E S, Wark M, et al. J. Chem. Soc., Faraday Trans., 1993, 89(21):3987-3994
-
[16]
[16] Kumar S, Kashyap S C, Chopra K L. J. Appl. Phys., 1992, 72(5):2066~2068
-
[17]
[17] Salitra G, Hodes G, Klein E, et al. Thin Solid Films, 1994, 245(1):180-185
-
[18]
[18] Bahl M K, Watson R L, Irgolic K J. J Chem Phys, 1980, 72 (7):4069-4077
-
[19]
[19] Gaarenstroom S W, Winograd N J. Chem. Phys., 1977, 67 (8):3500-3506
-
[20]
[20] Shu T, Zhou Z, Wang H, et al. J. Mater. Chem., 2012, 22 (21):10525-10529
-
[21]
[21] Chen H, Zhu L, Liu H, et al. J. Power Sources, 2014, 245: 406-410
-
[22]
[22] Raj C J, Karthick S N, Park S, et al. J. Power Sources, 2014, 248:439-446
-
[1]
-
-
-
[1]
Jiaxin Su , Jiaqi Zhang , Shuming Chai , Yankun Wang , Sibo Wang , Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-0. doi: 10.3866/PKU.WHXB202408012
-
[2]
Zizheng LU , Wanyi SU , Qin SHI , Honghui PAN , Chuanqi ZHAO , Chengfeng HUANG , Jinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225
-
[3]
Zhenhuan Wang , Weifei Wei , Ruijie Ma , Dou Luo , Zhanxiang Chen , Jun Zhang , Liyang Yu , Gang Li , Zhenghui Luo . 苯并[a]苯嗪受体的核心氰基化实现高效(19.04%)绿色溶剂加工的二元有机太阳能电池. Acta Physico-Chimica Sinica, 2026, 42(2): 100182-0. doi: 10.1016/j.actphy.2025.100182
-
[4]
Yipeng Zhou , Chenxin Ran , Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096
-
[5]
Xiaotian Hu , Binhuan Qiu , Jinglin Le , Runrui Dai , Xiaolan Lü , Yu Hu . Digital Design, Computational Modeling, Fabrication and Characterization of Organic Solar Cells Based on Green Energy Principles. University Chemistry, 2026, 41(1): 298-309. doi: 10.12461/PKU.DXHX202506034
-
[6]
Chuan′an DING , Weibo YAN , Shaoying WANG , Hao XIN . Preparation of wide-band gap copper indium gallium sulfide solar cells by solution method. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1755-1764. doi: 10.11862/CJIC.20250198
-
[7]
Yixuan Gao , Lingxing Zan , Wenlin Zhang , Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091
-
[8]
Nengmin ZHU , Wenhao ZHU , Xiaoyao YIN , Songzhi ZHENG , Hao LI , Zeyuan WANG , Wenhao WEI , Xuanheng CHEN , Weihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419
-
[9]
Yameen Ahmed , Xiangxiang Feng , Yuanji Gao , Yang Ding , Caoyu Long , Mustafa Haider , Hengyue Li , Zhuan Li , Shicheng Huang , Makhsud I. Saidaminov , Junliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057
-
[10]
Zongsheng LI , Yichao WANG , Yujie WANG , Wenhao ZHU , Xiaoyao YIN , Wudan YANG , Songzhi ZHENG , Weihai SUN . Preparation of CsPbBr3 perovskite solar cells via bottom interface modification with methylammonium chloride. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1805-1816. doi: 10.11862/CJIC.20250066
-
[11]
Pengyu Dong , Yue Jiang , Zhengchi Yang , Licheng Liu , Gu Li , Xinyang Wen , Zhen Wang , Xinbo Shi , Guofu Zhou , Jun-Ming Liu , Jinwei Gao . NbSe2 Nanosheets Improved the Buried Interface for Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 100029-0. doi: 10.3866/PKU.WHXB202407025
-
[12]
Longxiang LUO , Xiaoguo CAO , Yannan QIAN . Interface engineering with NH4PF6 for CsPbI2Br quantum dots for enhancing the performance of carbon-based all-inorganic perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2026, 42(2): 227-236. doi: 10.11862/CJIC.20250279
-
[13]
Zeyuan WANG , Songzhi ZHENG , Hao LI , Jingbo WENG , Wei WANG , Yang WANG , Weihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021
-
[14]
Xiaoyao YIN , Wenhao ZHU , Puyao SHI , Zongsheng LI , Yichao WANG , Nengmin ZHU , Yang WANG , Weihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309
-
[15]
Mingxuan Qi , Lanyu Jin , Honghe Yao , Zipeng Xu , Teng Cheng , Qi Chen , Cheng Zhu , Yang Bai . Recent progress on electrical failure and stability of perovskite solar cells under reverse bias. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-0. doi: 10.1016/j.actphy.2025.100088
-
[16]
Ying Liang , Yuheng Deng , Shilv Yu , Jiahao Cheng , Jiawei Song , Jun Yao , Yichen Yang , Wanlei Zhang , Wenjing Zhou , Xin Zhang , Wenjian Shen , Guijie Liang , Bin Li , Yong Peng , Run Hu , Wangnan Li . Machine learning-guided antireflection coatings architectures and interface modification for synergistically optimizing efficient and stable perovskite solar cells. Acta Physico-Chimica Sinica, 2025, 41(9): 100098-0. doi: 10.1016/j.actphy.2025.100098
-
[17]
Zhen FAN , Jiayan WANG , Wenhao ZHU , Xiuchun ZHANG , Yang WANG , Hao LI , Zeyuan WANG , Songzhi ZHENG , Weihai SUN . Fabrication of CsPbBr3 perovskite solar cells using buried polyvinylidene fluorideinterface modification method. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2464-2478. doi: 10.11862/CJIC.20250191
-
[18]
Shantao Zhang , TianAo Hou , Yandong Wang , Zhimin Fang , Yu Wu , Haolin Wang , Tao Chen , Shuang Chen , Wenhua Zhang , Shengzhong (Frank) Liu , Shangfeng Yang . π-Conjugation-extended dinaphthocarbazole phosphonic acid as a hole-selective layer for inverted perovskite solar cells. Acta Physico-Chimica Sinica, 2026, 42(3): 100194-0. doi: 10.1016/j.actphy.2025.100194
-
[19]
Ying Liu , Jia Ji , Yinling Hou , Lilan Guo , Xuan Lv . Selenium’s Journey. University Chemistry, 2025, 40(7): 218-224. doi: 10.12461/PKU.DXHX202409046
-
[20]
Yikai Wang , Xiaolin Jiang , Haoming Song , Nan Wei , Yifan Wang , Xinjun Xu , Cuihong Li , Hao Lu , Yahui Liu , Zhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 100027-0. doi: 10.3866/PKU.WHXB202406007
-
[1]
Metrics
- PDF Downloads(1)
- Abstract views(883)
- HTML views(152)
Login In
DownLoad: