Citation: WANG Ying, XUE Bing, LI Yi-Lin, LI Si-Nan, XU Chong-Fu. Extensive Hydrosilation of Acetyl Manganese Pentacarbonyl[J]. Chinese Journal of Inorganic Chemistry, ;2015, 31(7): 1393-1401. doi: 10.11862/CJIC.2015.194 shu

Extensive Hydrosilation of Acetyl Manganese Pentacarbonyl

  • Corresponding author: XU Chong-Fu, 
  • Received Date: 23 March 2015
    Available Online: 22 May 2015

    Fund Project: 国家自然科学基金(No.21376032)资助项目。 (No.21376032)

  • (CO)5MnCOCH3 (1) was synthesized in two steps. A solution 1 with Me2PhSiH in C6D6 was continuously monitored by 1H NMR spectroscopy for 9 h and reaction profile was established using timely contents (mmol) obtained by directly integrating chemical labels of the reactants and derivatives against that of the internal standard C6H5(CH2)2C6H5. 9 intermediates and final products emerged in the extensive hydrosilation were prepared and the molecular structures of the derivations generated in the reaction process were positively confirmed by comparison of their NMR spectra with that of real substances. All besides the 6 species that were quantified by direct integration of their chemical labels the other 3 were indirectly quantified by combination of chemical stoichiometry and integration of their chemical labels. Attempt was made to make plausible explanations for the origins of these species. Finally, a mechanism with multiple step reactions process and double pathways was proposed. More than 90.7% of the total manganese source was accounted for at 9 h and meanwhile that of more than 91.4% of the total silicon source was accounted for.
  • 加载中
    1. [1]

      [1] Gregg B T, Hanna P K, Crawford E J, et al. J. Am. Chem. Soc., 1991, 113(47):384-385

    2. [2]

      [2] Hanna P K, Gregg B T, CutlerA R. Organometallics, 1991, 10(1):31-33

    3. [3]

      [3] Ziegler T, Verslius L, Tschinke V J. J. Am. Chem. Soc., 1986, 108(21):612-614

    4. [4]

      [4] Axe F U, Marynick D S. Organometallics, 1987, 6(17):572-575

    5. [5]

      [5] Wegman R W. Organometallics, 1986, 5(3):707-710

    6. [6]

      [6] Kovacs I, Sisak A, Ungvary F, et al. Organometallics, 1988, 7 (10):1025-1029

    7. [7]

      [7] Glaysz J A. Acc. Chem. Res., 1984, 17(57):326-330

    8. [8]

      [8] Selover J C, Vaughn G D, Strouse C E, et al. J. Am. Chem. Soc., 1986, 108(11):1455-1457

    9. [9]

      [9] Vaughn G D, Glaysz J A. J. Am. Chem. Soc., 1986, 108(35): 1473-1475

    10. [10]

      [10] Gregg B T, Cutler A R. J. Am. Chem. Soc., 1996, 118, 42 (19):10069-10084

    11. [11]

      [11] Krein K A, Gladysz J A. Organometallics, 1986, 5(15):936-940

    12. [12]

      [12] Mars M, Brinkman K C, Lisensky C A, et al. J. Org. Chem., 1985, 50(24):3396-3398

    13. [13]

      [13] XU Chong-Fu(徐崇福), FANG Jun-Zhuo(房俊卓), CHEN Miao(陈苗), et al. Acta Chim. Sin.(化学学报), 2008, 66(10): 1239-1244

    14. [14]

      [14] Gregg B T, Cutler A R. Organometallics, 1994, 13(9):1039-1043

    15. [15]

      [15] XU Chong-Fu(徐崇福), FANG Jun-Zhuo(房俊卓), XUE Bing (薛冰), et al. Acta Chim. Sin.(化学学报), 2011, 69(8):999-1006

    16. [16]

      [16] Gladysz J A, Williams G M, Tam W, et al. Inorg. Chem., 1979, 18(3):553-558

    17. [17]

      [17] Warner K E, Norton J R. Organometallics, 1985, 4(16):2150-2154

    18. [18]

      [18] Tan K Y D, Teng G F, Fan W Y. Organometallics, 2011, 30 (15):4136-4143

    19. [19]

      [19] Anderson G K. Acc. Chem. Res., 1984, 17(21):67-74

    20. [20]

      [20] Gregg B T, Cutler A R. Organometallics, 1998, 17(32):4169-4175

    21. [21]

      [21] Gray L M, Donald A T. Inorganic Chemistry. New Jersey: Prentice Hall, 1999:297

    22. [22]

      [22] Gregg B T, Cutler A R. J. Am. Chem. Soc., 1995, 117(10): 10139-10140

    23. [23]

      [23] Mao Z, Gregg B T, Cutler A R. Organometallics, 1998, 17(10): 1993-2002

    24. [24]

      [24] Green M L H, Nagy P L I. J. Organomet. Chem., 1963, 1(27): 58-60

    25. [25]

      [25] Xu C F, Anderson G K A. Organometallics, 1996, 15(7):1760-1764

    26. [26]

      [26] XU Chong-Fu(徐崇福), FANG Jun-Zhuo(房俊卓), XUE Bing (薛冰), et al. Acta Chim. Sin.(化学学报), 2009, 67(20):2355-2362

    27. [27]

      [27] LI Rong (厉荣), CHEN Peng-Gang(陈鹏刚). Chinese J. Inorg. Chem.(无机化学学报), 2008, 24(20):657-660

  • 加载中
    1. [1]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    2. [2]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    3. [3]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    4. [4]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    5. [5]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    6. [6]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    7. [7]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    8. [8]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    9. [9]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    10. [10]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    11. [11]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    12. [12]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    13. [13]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    14. [14]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    15. [15]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    16. [16]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

Metrics
  • PDF Downloads(0)
  • Abstract views(312)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return