Citation: ZHANG Qiu-Lin, XU Li-Si, LIU Xin, NING Ping. Effect of P123 on Structure and CO Catalytic Oxidation Performance of CuO-CeO2 Catalysts[J]. Chinese Journal of Inorganic Chemistry, ;2015, 31(8): 1555-1562. doi: 10.11862/CJIC.2015.192 shu

Effect of P123 on Structure and CO Catalytic Oxidation Performance of CuO-CeO2 Catalysts

  • Corresponding author: NING Ping, 
  • Received Date: 13 March 2015
    Available Online: 25 May 2015

    Fund Project: 国家自然科学基金(No.21307047、U1137603)资助项目。 (No.21307047、U1137603)

  • A series of CuO-CeO2 (nCu:nCe=1:9, 2:8, 3:7, 4:6, 5:5, 6:4, 7:3) catalysts with different Cu/Ce molar ratios (nCu:nCe) were prepared by soft template hydrothermal method. The effect of nCu:nCe and preparation methods (soft template hydrothermal method and co-precipitation without template method) on CO catalytic oxidation performance was investigated, and the structure, reduction features and surface chemical states of the CuO-CeO2 catalysts were characterized by XRD, TEM, low temperature adsorption-desorption, temperature programmed reduction (H2-TPR) and XPS. The results show that with the increase of nCu:nCe, the CO catalytic oxidation activities of CuO-CeO2 catalysts increase firstly and then decrease. When the nCu:nCe is 5:5, the CO catalytic oxidation activity of the catalyst is more than 90% at 100℃. The large specific surface area, narrow pore structure distribution, high dispersion of active CuO species and the strong interaction between CuO and CeO2 of CuO-CeO2 catalyst prepared by soft template hydrothermal method are the main factors for its excellent CO catalytic oxidation activity.
  • 加载中
    1. [1]

      [1] Qin J W, Lu J F, Cao M H, et al. Nanoscale, 2010,2:2739-2743

    2. [2]

      [2] Kalamaras C M, Americanou S, Efstathiou A M. J. Catal., 2011,279:287-300

    3. [3]

      [3] Kim J R, Myeong W J, Ihm Son-Ki. J. Catal., 2009,263:123-133

    4. [4]

      [4] Luo J Y, Meng M, Zha Y Q, et al. J. Phys. Chem. C, 2008, 112(23):8694-870

    5. [5]

      [5] Zheng X, Wang S, Zhang S, et al. Catal. Commun., 2004,5:729-732

    6. [6]

      [6] Zhu J, Zhang L, Deng Y, et al. Appl. Catal. B:Environ., 2010,96:449-457

    7. [7]

      [7] Luo M F, Song Y P, Lu J Q, et al. J. Phys. Chem. C, 2007, 111:12686-12692

    8. [8]

      [8] Skårman B, Grandjean D, Benfield R E, et al. J. Catal., 2002, 211:119-133

    9. [9]

      [9] Rao K N, Bharali P, Thrimurthulu G, et al. Catal. Commun., 2010,11:863-866

    10. [10]

      [10] Kundakovic L, Flytzani-Stephanopoulos M. Appl. Catal. A:Gen., 1998,171(1):13-29

    11. [11]

      [11] Kundakovic L, Flytzani-Stephanopoulos M. J. Catal., 1998, 179(1):203-221

    12. [12]

      [12] Xie X W, Li Y, Liu Z Q, et al. Nature, 2009,458:746-749

    13. [13]

      [13] Avgouropoulos G, Ioannides T. Appl. Catal. B:Environ., 2006,67(1/2):1-11

    14. [14]

      [14] Lee H C, Kim D H. Catal. Today, 2008,132:109-116

    15. [15]

      [15] Jung C R, Han J, Nam S W, et al. Catal. Today, 2004,93-95:183-190

    16. [16]

      [16] Zou H B, Chen S Z, Liu Z L, et al. Powder Technol., 2011, 207:238-244

    17. [17]

      [17] Wang W W, Du P P, Zou S H, et al. ACS Catal., 2015,5:2088-2099

    18. [18]

      [18] Li L, Song L, Wang H, et al. Int. J. Hydrogen Energy, 2011, 36:8839-8849

    19. [19]

      [19] Bera P, Aruna S T, Patil K C, et al. J. Catal., 1999,186(1):36-44

    20. [20]

      [20] Astudilloa J, Águilab G, Díaz F, et al. Appl. Catal. A:Gen., 2010,381:169-176

    21. [21]

      [21] Chadwick A V, Savin S L P. J. Alloys Compd., 2009,488:1-4

    22. [22]

      [22] Sedmak G, Hocevar S, Levec J. J. Catal., 2003,213(2):135-150

    23. [23]

      [23] Gu D, Jia C J, Bongard H, et al. Appl. Catal. B:Environ., 2014,152-153:11-18

    24. [24]

      [24] Tang C J, Sun J F, Yao X J, et al. Appl. Catal. B:Environ., 2014,146:201-212

    25. [25]

      [25] Pérez N C, Miró E E, Zamaro J M. Appl. Catal. B:Environ., 2013,129:416-425

    26. [26]

      [26] Zhou G L, Lan H, Song R Y, et al. RSC Adv., 2014,4:50840-50850

    27. [27]

      [27] Niu K, Shi D J, Dong W F, et al. J. Coll. Interf. Sci., 2011, 362(1):74-80

    28. [28]

      [28] Wang Z, Qu Z P, Quan X, et al. Appl. Catal. B:Environ., 2013,134-135:153-166

    29. [29]

      [29] Zou Z Q, Meng Ming, Guo L H, et al. J. Hazard. Mater., 2009,163:835-842

    30. [30]

      [30] Vidal H,Kǎspar J, Pijolat M, et al. Appl. Catal. B:Environ., 2000,27(1):49-63

    31. [31]

      [31] Morris S M, Horton J A, Jaroniec M. Microporous Mesopor. Mater., 2010,128:180-186

    32. [32]

      [32] Łamacz A, Krzto A, Djéga-Mariadassou G. Appl. Catal. B:Environ., 2013,142-143:268-277

    33. [33]

      [33] Vidal H,Kǎspar J, Pijolat M, et al. Appl. Catal. B:Environ., 2000,27(1):49-63

    34. [34]

      [34] Zeng S H, Wang Y, Liu K, et al. Int. J. Hydrogen Energy, 2012,37(16):11640-11649

    35. [35]

      [35] ZHANG Li-Ping(张丽萍), WAN Hai-Qin(万海勤), ZHU Jie (朱捷), et al. Chinese J. Inorg. Chem.(无机化学学报), 2007, 23(3):427-431

    36. [36]

      [36] Fan J, Wu X D, Wu X D, et al. Appl. Catal. B:Environ., 2008,81(1/2):38-48

    37. [37]

      [37] Zeng S H, Zhang W L, Sliwa M, et al. Int. J. Hydrogen Energy, 2013,38(9):3597-3605

    38. [38]

      [38] LI Zhi-Hong(李志红), HUANG Wei(黄伟), ZUO Zhi-Jun(左志军), et al. Chinese J. Catal.(催化学报), 2009,30(2):171-177

    39. [39]

      [39] Chen W T, Jovic V, Sun-Waterhouse D X, et al. Int. J. Hydrogen Energy, 2013,38(35):15036-15048

  • 加载中
    1. [1]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    2. [2]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    3. [3]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    4. [4]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    5. [5]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    6. [6]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    7. [7]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    8. [8]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    9. [9]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    10. [10]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    11. [11]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    12. [12]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    13. [13]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    14. [14]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    15. [15]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    16. [16]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    17. [17]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    18. [18]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    19. [19]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    20. [20]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

Metrics
  • PDF Downloads(0)
  • Abstract views(225)
  • HTML views(38)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return