Citation: HAO Zhi-Qiang, YU Zhi-Hui, LI Zhong. Influence of Ni/Fe Molar Ratio on Surface Properties of Ni-Fe Catalysts and Hydrogenation Performance of Dinitrotoluene[J]. Chinese Journal of Inorganic Chemistry, ;2015, 31(8): 1571-1580. doi: 10.11862/CJIC.2015.186 shu

Influence of Ni/Fe Molar Ratio on Surface Properties of Ni-Fe Catalysts and Hydrogenation Performance of Dinitrotoluene

  • Corresponding author: LI Zhong, 
  • Received Date: 12 April 2015
    Available Online: 21 May 2015

    Fund Project: 国家"973"计划(No.2012CB723105)资助项目。 (No.2012CB723105)

  • Ni-Fe catalysts were prepared via the replacement reaction of NiCl2 by Fe and used for the selective hydrogenation of dinitrotoluene (DNT) in liquid phase. The influences of Ni/Fe molar ratio (nNi/nFe) on the surface properties and catalytic performance of Ni-Fe catalysts were investigated. The characterization results from XRD, Low temperature nitrogen adsorption -desorption, H2-TPD, XPS and TEM show that nNi/nFe has a significant effect on the surface properties of Ni-Fe catalysts. When nNi/nFe is 1:4, the effect of Fe inhibition on the oxidation of nickel is more apparent, the chemical adsorption of hydrogen is 0.16 mmol·g-1 and the dispersion of active species Ni achieves 23%. The performance of Ni-Fe catalysts is greatly improved. Under the optimized catalysts preparation conditions, the conversion of DNT (dinitrotoluene) and the selectivity of TDA (toluenediamine) could reach~100% and 99%, respectively. In addition, Ni-Zn Urushibara nickel catalysts and Ni-Fe catalysts have~the same catalytic hydrogenation~pathway but different catalytic reaction rate in a different reaction stages.
  • 加载中
    1. [1]

      [1] YAN Shao-Wei(闫少伟), FAN Hui(范辉), LIANG Chuan (梁川), et al. Chem. J. Chinese Universities(高等学校化学学报), 2012,33(9):2067-2073

    2. [2]

      [2] YAN Shao-Wei(闫少伟), FAN Hui(范辉), LIANG Chuan (梁川), et al. Chinese J. Catal.(催化学报), 2012,33(8):1374-1382

    3. [3]

      [3] Surapas S, Wei A, Daniel E R. J. Catal., 2011,284:90-101

    4. [4]

      [4] Wang L, Li D L, Koike M, et al. Appl. Catal. A:Gen., 2011,392:248-255

    5. [5]

      [5] Lei N, Priscilla M de Souza, Fabio B N, et al. J. Mol. Catal. A:Chem., 2014,388-389:47-55

    6. [6]

      [6] Yan X H, Sun J Q, Wang Y W, et al. J. Mol. Catal. A:Chem., 2006,252(1/2):17-22

    7. [7]

      [7] Fang M X, Tang W, Yu C J, et al. Fuel Process. Technol., 2015,129:236-244

    8. [8]

      [8] Lin C H, Shih Y H, MacFarlane J. Chem. Eng. J., 2015,262:59-67

    9. [9]

      [9] Alokd B, Rajeevc C, Chandrashekharv V R, et al. Environ. Sci. Technol., 2007,41:7437-7443

    10. [10]

      [10] Han Y, Li W, Zhang M H, et al. Chemosphere, 2008,72:53-58

    11. [11]

      [11] Oliveira V L, Morais C, Servat K, et al. Electrochim. Acta, 2014,117:255-262

    12. [12]

      [12] Tian D Y, Liu Z H, Li D D, et al. Fuel, 2013,104:224-229

    13. [13]

      [13] YU Zhi-Hui(于智慧), YAN Ze(闫泽), FAN Hui(范辉), et al. Chinese J. Inorg. Chem.(无机化学学报), 2014,30(6):1317-1324

    14. [14]

      [14] YU Zhi-Hui(于智慧), YAN Ze(闫泽), FAN Hui(范辉), et al. Chem. J. Chinese Universities(高等学校化学学报), 2014,35(10):2227-2233

    15. [15]

      [15] Fang Z Q, Qiu X H, Chen J H, et al. J. Hazard. Mater., 2011,185:958-969

    16. [16]

      [16] Kustov A L, Frey A M, Larsen K E, et al. Appl. Catal. A:Gen., 2007,320:98-104

    17. [17]

      [17] Adabavazeh Z, Karimzadeh F, Enayati M H. Adv. Powder Technol., 2012,23(3):284-289

    18. [18]

      [18] Pandey D, Deo G. J. Mol. Catal. A:Chem., 2014,382:23-30

    19. [19]

      [19] Zhang Z, Cissoko N, Wo J J, et al. J. Hazard. Mater., 2009,165(13):78-86

    20. [20]

      [20] Jacob I, Fisher M, Hadari Z, Herskowitz M, et al. J. Catal., 1986,101(1):28-34

    21. [21]

      [21] Benrabaa R, Lfberg A, Rubbens A, et al. Catal. Today, 2013,203:188-195

    22. [22]

      [22] Zhang W H, Quan X, Wang J X, et al. Chemosphere, 2006,65:58-64

    23. [23]

      [23] SHI Qiu-Jie(石秋杰), LEI Jing-Xin(雷经新), ZHANG Ning (张宁). Acta Phys.-Chim. Sin.(物理化学学报), 2007,23:98-102

    24. [24]

      [24] Wu Z J, Zhang M H, Zhao Z F, et al. J. Catal., 2008,256:323-330

    25. [25]

      [25] Han Y L, Yan W L. Water Res., 2014,66:149-159

    26. [26]

      [26] Schrick B, Blough J L, Jones A D, et al. Chem. Mater., 2002,14(12):5140-5147

    27. [27]

      [27] WANG Wei-Yan(王威燕), YANG Yun-Quan(杨运泉), LUO He-An(罗和安), et al. Chinese J. Catal.(催化学报), 2011,32(10):1645-1650

    28. [28]

      [28] Wei J J, Qian Y J, Liu W J, et al. J. Environ. Sci., 2014,26:1162-1170

    29. [29]

      [29] LIU Hao(刘皓), LI Ruo-Yu(李若愚), ZHANG Meng(张濛), et al. Chinese J. Catal. (催化学报), 2009,30(7):606-612

  • 加载中
    1. [1]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    2. [2]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    3. [3]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    4. [4]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    5. [5]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    6. [6]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    7. [7]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    8. [8]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    9. [9]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    10. [10]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    11. [11]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    12. [12]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    13. [13]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    14. [14]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    15. [15]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    16. [16]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    17. [17]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    18. [18]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    19. [19]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    20. [20]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

Metrics
  • PDF Downloads(0)
  • Abstract views(166)
  • HTML views(20)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return