Citation: JIAO Hua-Jing, WANG Qi, DING Liu-Liu, LU Chang-Sheng. Maleonitriledithiolate Modified β-Cyclodextrin: Self-Inclusion and Response to Metal Ions[J]. Chinese Journal of Inorganic Chemistry, ;2015, 31(7): 1269-1277. doi: 10.11862/CJIC.2015.180 shu

Maleonitriledithiolate Modified β-Cyclodextrin: Self-Inclusion and Response to Metal Ions

  • Corresponding author: LU Chang-Sheng, 
  • Received Date: 3 April 2015
    Available Online: 11 May 2015

    Fund Project: 江苏省自然科学基金(No.BK2011550)资助项目。 (No.BK2011550)

  • The self-inclusion of maleonitriledithiolate-modified β-Cyclodextrin (mono[6-deoxy-6-(2-butene-dinitrile-2,3-dimercapto)]-β-Cyclodextrin, 6-mnt-β-Cyclodextrin) was studied by circular dichroism (CD) spectroscopy, 1H NMR spectroscopy, isothermal titration calorimetry (ITC), and chemical titration methods. Chemical titration results indicate that sodium dodecyl sulfate (SDS) is able to effectively dissociate the configuration of 6-mnt-β-Cyclodextrin, as well as Cu2+ and Co2+ do in solution. The experimental data suggest that 6-mnt-β-Cyclodextrin prefers self-inclusion in aqueous solution, which could be reversibly unlocked by metal ions. In its unlocked conformation, 6-mnt-β-Cyclodextrin is able to include Neutral Red (NR) and exhibits host-guest interactions. Upon removal of the "key" metal ion, 6-mnt-β-Cyclodextrin liberates the guest molecule and restores its self-inclusion. Therefore, the maleonitriledithiolate-modified cyclodextrin host exhibits potential to controllably uptake and release its guest by selected metal ion coordination.
  • 加载中
    1. [1]

      [1] D'Souza V T, Lipkowitz K B. Chem. Rev., 1998, 5:1741-1742

    2. [2]

      [2] Yuan D Q, Lu J Z, Atsumi M, et al. Chem. Commun., 2002: 730-731

    3. [3]

      [3] (a)Ma X, Wang Q C, Tian H. Tetrahedron Lett., 2007, 48:7112-7116

    4. [4]

      (b)Zhong C, Mu T, Wang L, et al. Chem. Commun., 2009: 4091-4093

    5. [5]

      (c)Liu Y, Shi J, Guo D S. J. Org. Chem., 2007, 72:8227-8234

    6. [6]

      (d)Liu Y, Zhao Y L, Zhang H Y, et al. J. Phys. Chem. B, 2004, 108:8836-8843

    7. [7]

      (e)Ueno A, Ikeda A, Ikeda H, et al. J. Org. Chem., 1999, 64: 382-387

    8. [8]

      (f)Nielson M B, Nielson S B, Becker J. Chem. Commun., 1998:475-476

    9. [9]

      [4] (a)Gao X M, Tong L H, Zhang Y L. Tetrahedron Lett., 1999, 40:969-972

    10. [10]

      (b)Gao X M, Zhang Y L, Tong L H, et al. J. Incl. Phenom. Macrocycl. Chem., 2001, 39:77-80

    11. [11]

      (c)Fujimoto T, Sakata Y, Kaneda T. Chem. Commun., 2000: 2143-2144

    12. [12]

      [5] Liu Y, Wang H, Chen Y, et al. J. Am. Chem. Soc., 2005, 127: 657-666

    13. [13]

      [6] (a)Park J W, Choi N H, Kim J H. J. Phys. Chem., 1996, 100: 769-774

    14. [14]

      (b)Mirzoian A, Kaifer A E. Chem. Commun., 1999:1603-1604

    15. [15]

      (c)Liu Y, Yang Z X, Chen Y. J. Org. Chem., 2008, 73:5298-5304

    16. [16]

      (d)Balzani V, Gómez-López M, Stoddart J F. Acc. Chem. Res., 1998, 31:405-414

    17. [17]

      (e)Sauvage J P. Acc. Chem. Res., 1998, 31:611-619

    18. [18]

      (f)Jimenez-Molero M C, Dietrich-Buchecker C, Sauvage J P. Chem. Eur. J., 2002, 8:1456-1466

    19. [19]

      (g)Liu Y, Flood A H, Bonvallet P A, et al. J. Am. Chem. Soc., 2005, 127:9745-9759

    20. [20]

      (h)Dawson R E, Lincoln S F, Easton C J. Chem. Commun., 2008:3980-3982

    21. [21]

      (i)Kuad P, Miyawaki A, Takashima Y, et al. J. Am. Chem. Soc., 2007, 129:12630-12631

    22. [22]

      [7] (a)Lu C S, Zhang W W, Ren X M, et al. Dalton Trans., 2001: 3052-3055

    23. [23]

      (b)Lu C S, Ren X M, Hu C J, et al. Chem. Pharm. Bull., 2001, 49:818-821

    24. [24]

      [8] Lu C S, Lu Z D. J. Incl. Phenom. Macrocycl. Chem., 2007, 59:357-361

    25. [25]

      [9] Harata K, Uedaira H. Bull. Chem. Soc. Jpn., 1975, 48:375-378

    26. [26]

      [10] Shimizu H, Kaito A, Hatano M. Bull. Chem. Soc. Jpn., 1979, 52:2678-2684

    27. [27]

      [11] Shimizu H, Kaito A, Hatano M. Bull. Chem. Soc. Jpn., 1981, 54:513-519

    28. [28]

      [12] Kodaka M. J. Phys. Chem., 1991, 95:2110-2112

    29. [29]

      [13] Kodaka M. J. Am. Chem. Soc., 1993, 115:3702-3705

    30. [30]

      [14] Park J W, Lee S Y, Song H J, et al. J. Org. Chem., 2005, 70: 9505-9513

    31. [31]

      [15] Pagliari S, Corradini R, Galaverna G, et al. Chem. Eur. J., 2004, 10:2749-2758

    32. [32]

      [16] Zhang X, Nau W M. Angew. Chem., Int. Ed., 2000, 39:544-547

    33. [33]

      [17] Park J W, Song H E, Lee S Y. J. Phys. Chem. B, 2002, 106: 5177-5183

    34. [34]

      [18] González-Álvarez M J, Balbuena P, Mellet C O, et al. J. Phys. Chem. B, 2008, 112:13717-13729

    35. [35]

      [19] Lu Z D, Lu C S, Meng Q J. J. Incl. Phenom. Macrocycl. Chem., 2008, 61:101-106

    36. [36]

      [20] Song L X, Wang H M, Guo X Q, et al. J. Org. Chem., 2008, 73:8305-8316

    37. [37]

      [21] Jobe D J, Verrall R E, Juquera E, et al. J. Phys. Chem., 1993, 97:1243-1248

    38. [38]

      [22] Francois D, Patrice W, Marc Bria, et al. Carbohydr. Res., 2005, 340:1706-1713

    39. [39]

      [23] (a)Bakirci H, Zhang X, Nau W M. J. Org. Chem., 2005, 70: 39-46

    40. [40]

      (b)Dsouza R N, Nau W M. J. Org. Chem., 2008, 73:5305-5310

    41. [41]

      [24] Cheng X, Wang Q, Lu C S, et al. J. Phys. Chem. A, 2010, 114:7230-7240

    42. [42]

      [25] (a)Liu Y, Li C J, Guo D S, et al. Supramol. Chem., 2007, 19: 517-523

    43. [43]

      (b)Shaikh M, Choudhury S D, Mohanty J, et al. Phys. Chem. Chem. Phys., 2010, 12:7050-7055

    44. [44]

      (c)Zhang G M, Shuang S M, Dong Z M, et al. Anal. Chim. Acta, 2002, 474:189-195

    45. [45]

      (d)Shaikh M, Mohanty J, Bhasikuttan A C, et al. Chem. Commun., 2008:3681-3683

    46. [46]

      [26] (a)Singh M K, Pal H, Koti A S R, et al. J. Phys. Chem. A, 2004, 108:1465-1474

    47. [47]

      (b)Liu Y, Song Y, Chen Y, et al. J. Phys. Chem. B, 2005, 109:10717-10726

    48. [48]

      [27] Le X S, Shu Z P, Lin H Z, et al. Inorg. Chem., 2011, 50: 2215-2223

  • 加载中
    1. [1]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    2. [2]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    3. [3]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    4. [4]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    5. [5]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    6. [6]

      Aiyi Xin Jiawei Li Xinyang Ran Chuanjiang Fu Zhiguo Wang . Collaborative Science and Education Based Experimental Design in Organic Chemistry: A Case Study of the Nucleophilic Substitution Reaction of 2-Hydroxymethyl-4,6-Di-Tert-Butylphenol. University Chemistry, 2025, 40(5): 366-375. doi: 10.12461/PKU.DXHX202407031

    7. [7]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    8. [8]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    9. [9]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    10. [10]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    11. [11]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    12. [12]

      Xiaoyang Li Xiaowei Huang Yimeng Zhang Huan Liu Shao Jin Junpeng Zhuang . Comprehensive Chemical Experiments on the Synthesis of 1,3-Dibromo-5,5-Dimethylhydantoin and Its Application as a Brominating Reagent. University Chemistry, 2025, 40(7): 286-293. doi: 10.12461/PKU.DXHX202408035

    13. [13]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    14. [14]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    15. [15]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    16. [16]

      Meijin Li Xirong Fu Xue Zheng Yuhan Liu Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027

    17. [17]

      Zhanhong Tong Xiaoyu Xie Fangfang Chen . Appreciating Autumn Leaves: A Brief Analysis of the Causes behind “Frost Leaves Redder than February Flowers”. University Chemistry, 2024, 39(9): 183-188. doi: 10.12461/PKU.DXHX202404005

    18. [18]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    19. [19]

      Huanhuan XIEYingnan SONGLei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281

    20. [20]

      Haiyu ZhuZhuoqun WenWen XiongXingzhan WeiZhi Wang . Accurate and efficient prediction of Schottky barrier heights in 2D semimetal/silicon heterojunctions. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-0. doi: 10.1016/j.actphy.2025.100078

Metrics
  • PDF Downloads(0)
  • Abstract views(394)
  • HTML views(40)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return