Citation: CHEN Qing-Hua, YI Qing-Feng. Effect of Ligands on Formation and Electroactivity for Ethanol Oxidation of Pd Nano-Catalysts[J]. Chinese Journal of Inorganic Chemistry, ;2015, (6): 1145-1152. doi: 10.11862/CJIC.2015.171 shu

Effect of Ligands on Formation and Electroactivity for Ethanol Oxidation of Pd Nano-Catalysts

  • Corresponding author: YI Qing-Feng, 
  • Received Date: 30 December 2014
    Available Online: 26 April 2015

    Fund Project: 国家自然科学基金(No.21376070,20876038) (No.21376070,20876038)湖南省自然科学基金(No.14JJ2096)资助项目。 (No.14JJ2096)

  • Multi-walled carbon nano-tube (MWCNT)-supported palladium nano-catalysts (Pd-EDTA/MWCNT, Pd-Gly/MWCNTand Pd-Ls/MWCNT) were prepared by supporting Pd nano-particles on MWCNT. The Pd nano-particles were obtained from reduction of Pd2+ with NaBH4 as the reducing agent in the presence of EDTA, Glycine(Gly), and sodium lignin sulfonate(Ls) as the ligand, separately. The catalysts were characterized by SEM, TEMand XRD. The electrochemical activity of the catalysts towards ethanol oxidation in alkaline media was examined by cyclic voltammetry (CV) and chronoamperometry (CA). The characterization results show that the Pd-EDTA/MWCNTcatalyst exhibits a smaller particle size and a better dispersity of Pd nanoaprticles compared to the Pd-Gly/MWCNTand Pd-Ls/MWCNTcatalysts. As for the ethanol oxidation in alkaline media, the Pd-EDTA/MWCNTcatalyst exhibits a lower onset potential, a higher current density, a smaller electron transfer resistance, a larger reaction rate, and more stable oxidation current, in comparison with the other two catalysts.
  • 加载中
    1. [1]

      [1] Barragán V M, Heinzel A. J. Power Sources, 2002,104(1):66 -72

    2. [2]

      [2] Rousseau S, Coutanceau C, Lamy C, et al. J. Power Sources, 2006,158(1):18-24

    3. [3]

      [3] ZHU Ke(朱科), CHEN Yan-Xi(陈延禧), ZHANG Ji-Yan(张 继炎). Chinese J. Power Sources(电源技术), 2004,28(3):187-190

    4. [4]

      [4] Zhou W J, Zhou Z H, Song S Q, et al. Appl. Catal. B: Environ., 2003,46(2):273-285

    5. [5]

      [5] Iwasita T. Electrochim. Acta, 2002,47(22/23):3663-3674

    6. [6]

      [6] CHEN Yu(陈煜). Thesis for the Master of Nanjing Normal University(南京师范大学硕士论文). 2006.

    7. [7]

      [7] JIANG Lu-Hua(姜鲁华). Thesis for the Doctorate of Graduate University of Chinese Academy of Sciences(Dalian Institute of Chemical Physics)(中国科学院研究生院(大连化学物理 研究所)), 2005.

    8. [8]

      [8] LUO Bin(罗彬), ZHOU Di-Bi(周地璧), ZHAO Da-Peng(赵大 鹏), et al. Mater. Rev.(China)(材料导报), 2007,21(6):288-291

    9. [9]

      [9] Lamy C, Lima A, LeRhun V, et al. J. Power Sources, 2002, 105(2):283-296

    10. [10]

      [10] Habibi E, Bidad E, Feizbakhsh A, et al. Inter. J. Hydrogen Energy, 2014,39(32):18416-18423

    11. [11]

      [11] ZENG Xiang-An(曾湘安). J. Graduates, SUN YET-SEN Univ.: Natural Sciences, Medicine(中山大学研究生学刊:自然科 学,医学版), 2010,31(3):9-16

    12. [12]

      [12] Xu C W, Shen P K, Liu Y L. J. Power Sources, 2007,164 (2):527-531

    13. [13]

      [13] Ma L, Chu D, Chen R R. Inter. J. Hydrogen Energy, 2012, 37(15):11185-11194

    14. [14]

      [14] Xu C W, Tian Z Q, Chen Z C, et al. Electrochem. Commun., 2008,10(2):246-249

    15. [15]

      [15] Li Z P, Li J F, Wu X, et al. Sens. Actuattors B: Chem., 2009, 139(2):453-459

    16. [16]

      [16] Singh P, Kulkarni M V, Gokhale S P, et al. Appl. Surf. Sci., 2012,258(8):3405-3409

    17. [17]

      [17] Yi Q F, Chu H, Chen Q H, et al. Electroanal., 2015,27:388-397

    18. [18]

      [18] Yi Q F, Niu F J. Thin Solid Films, 2011,519(10):3155-3161

    19. [19]

      [19] SUN Gang-Wei(孙刚伟). Thesis for the doctor of East China University of Science and Technology(华东理工大学博士 论文). 2012.

    20. [20]

      [20] Bard A J, Faulknler L R. Translated by SHAO Yuan-Hua (邵元华), ZHU Guo-Yi(朱果逸), DONG Xian-Dui(董献堆). Electrochemical Methods: Fundamentals and Applications (电化学方法原理和应用). Beijing: Chemical Industry Press, 2005.

    21. [21]

      [21] Liu J P, Ye J Q, Xu C W, et al. Electrochem. Commun., 2007,9:2334-2339

    22. [22]

      [22] Modibedi R M, Masombuka T, Mathe M K. Inter. J. Hydrogen Energy, 2011,36(8):4664-4672

  • 加载中
    1. [1]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    2. [2]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    3. [3]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    4. [4]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    5. [5]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    6. [6]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    7. [7]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    8. [8]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    9. [9]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    10. [10]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    11. [11]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    12. [12]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    13. [13]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    14. [14]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    15. [15]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    16. [16]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    17. [17]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    18. [18]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    19. [19]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    20. [20]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

Metrics
  • PDF Downloads(0)
  • Abstract views(337)
  • HTML views(64)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return