Citation: WU Xiao-Dong, SHAO Gao-Feng, CUI Sheng, WANG Ling, SHEN Xiao-Dong. Preparation and Characterization of SiO2/Carbon Foam and SiC/Carbon Foam Composites[J]. Chinese Journal of Inorganic Chemistry, ;2015, (6): 1252-1260. doi: 10.11862/CJIC.2015.161 shu

Preparation and Characterization of SiO2/Carbon Foam and SiC/Carbon Foam Composites

  • Corresponding author: SHEN Xiao-Dong, 
  • Received Date: 8 March 2015
    Available Online: 21 April 2015

    Fund Project: 江苏省高校优势学科建设工程项目(PAPD) (PAPD)长江学者和创新团队发展计划(No.IRT1146) (No.IRT1146)江苏博士后研究基金计划项目(1402016A)资助。 (1402016A)

  • The synthesis and characterization of carbon foam supported silica aerogel (SiO2/Carbon foam) and silicon carbide composite (SiC/Carbon foam) are presented in this study. The phase composition, microstructure, thermal and mechanical properties are investigated by XRD, SEM, LFA Laser Flashmeasurements, and Universal Material Testing.The resulting SiO2/Carbon foam composite shows a higher compressive strength (14.95 MPa) and a smaller thermal conductivity (0.44 W·m-1·K-1) at room temperature, in comparison with the pristine carbon foam. The SiC/Carbon foam composite maintains a compressive strength of 14.66 MPa, and possesses a low high-temperature thermal conductivity (2.18 W·m-1·K-1 at 1200 ℃). Mass loss does not begin until 610 ℃ for the SiC/Carbon foam composite, and complete carbon combustion does not occur until 844 ℃, indicating a much better thermal stability than the pristine carbon foam in oxidizing atmosphere.
  • 加载中
    1. [1]

      [1] Wu X W, Fang M H, Mei L F, et al. Mater. Sci. Eng. A, 2012, 558:446-450

    2. [2]

      [2] Luo R Y, Ni Y F, Li J S, et al. Mater. Sci. Eng. A, 2011,528 (4/5):2023-2027

    3. [3]

      [3] XIAO Feng(肖锋), ZHANG Hong-Bo(张红波), Xiong Xiang(熊翔), et al. Chinese J. Nonferrous Met.(中国有色金 属学报), 2010,20(7):1346-1352

    4. [4]

      [4] He X, Tang Z H, Zhu Y F, et al. Mater. Lett., 2013,94:55-57

    5. [5]

      [5] Sihn S, Roy A K. J. Mech. Phys. Solids, 2004,52(1):167-191

    6. [6]

      [6] LI Kai(李凯), LUAN Zhi-Qiang(栾志强). New Carbon Mater.(新型炭材料), 2004,19(1):77-78

    7. [7]

      [7] Neugebauer A, Chen K, Tang A, et al. Energy Build., 2014, 79:47-57

    8. [8]

      [8] Wei G S, Liu Y S, Zhang X X, et al. J Non-Cryst. Solids, 2013,362:231-236

    9. [9]

      [9] Sun H R, Zhang S C, Deng Z W, et al. Key Eng. Mater., 2014,602:126-129

    10. [10]

      [10] Xie T, He Y L, Hu Z J. Int. J. Heat Mass Transfer, 2013,58 (1/2):540-552

    11. [11]

      [11] Liao Y D, Wu H J, Ding Y F, et al. J. Sol-Gel Sci. Technol., 2012,63(3):445-456

    12. [12]

      [12] Jung I K, Gurav J L, Ha T J, et al. Ceram. Int., 2012,38(1): 105-108

    13. [13]

      [13] Wei G S, Liu Y S, Zhang X X, et al. Int. J. Heat Mass Transfer, 2011,54(11): 2355-2366

    14. [14]

      [14] ZHANG Jun-Jun(张君君), ZHONG Ya(仲亚), SHEN Xiao-Dong(沈晓冬), et al. Chinese J. Inorg. Chem. (无机化学学 报), 2014,30(4):793-799

    15. [15]

      [15] LIN Jian-Xin(林建新), ZHENG Yong(郑勇), ZHENG Ying (郑瑛), et al. Chinese J. Inorg. Chem. (无机化学学报), 2006,22(10):1778-1782

    16. [16]

      [16] Worsley M A, Kuntz J D, Satcher J J, et al. J Mater. Chem., 2010,20(23):4840-4844

    17. [17]

      [17] Labat G A, Zollfrank C, Ortona A, et al. Ceram. Int., 2013,39(2):1841-1851

    18. [18]

      [18] KONG Yong(孔勇), SHEN Xiao-Dong(沈晓冬), CUI Sheng (崔升), et al. Chinese J. Inorg. Chem.(无机化学学报), 2014,30(12):2825-2831

    19. [19]

      [19] SHI Ya-Chun(史亚春), LI Tie-Hu(李铁虎), WANG Xi-Lin (王习林), et al. Funct. Mater.(功能材料), 2013,44(20):3049 -3052

    20. [20]

      [20] DU Shan(杜姗). Thesis for the Master's Degree of Harbin Institute of Technology(哈尔滨工业大学硕士学位论文), 2013.

    21. [21]

      [21] HUANG Peng(黄鹏). Thesis for the Master's Degree of Harbin Institute of Technology(哈尔滨工业大学硕士学位 论文), 2013.

    22. [22]

      [22] Calvo M, Garcia R, Arenillas A, et al. Fuel, 2005,84(17): 2184-2189

    23. [23]

      [23] Feng J Z, Feng J, Jiang Y G, et al. Mater. Lett., 2011,65 (23/24):3454-3456

    24. [24]

      [24] Lin Q L, Luo B, Qu L J, et al. J. Anal. Appl. Pyrolysis, 2013,104:714-717

    25. [25]

      [25] Leventis N, Sadekar A, Chandrasekaran N, et al. Chem. Mater., 2010,22(9):2790-2803

    26. [26]

      [26] Li X T, Chen X H, Song H H. Mater. Sci. Eng. B, 2011,176 (1):87-91

    27. [27]

      [27] Mishra S B, Mishra A K, Mamba B B, et al. Mater. Lett., 2011,65(14):2245-2247

    28. [28]

      [28] Li X T, Chen X H, Song H H. J. Mater. Sci., 2009,44(17): 4661-4667

    29. [29]

      [29] XU Wu-Jun(徐武军), XU Yao(徐耀), SUN Xian-Yong (孙先勇), et al. New Carbon Mater. (新型炭材料), 2006,21 (2):167-170

    30. [30]

      [30] Xu S J, Qiao G J, Wang H J, et al. Mater. Lett., 2008,62 (30):4549-4551

    31. [31]

      [31] Li S Z, Song Y Z, Song Y, et al. Carbon, 2007,45(10):2092 -2097

    32. [32]

      [32] Kong Y, Zhong Y, Shen X D, et al. Mater. Lett., 2013,99: 108-110

    33. [33]

      [33] Saeedifar Z, Nourbakhsh A A, Kalbasi R J, et al. J. Mater. Sci. Technol., 2013,29(3):255-260

    34. [34]

      [34] Zhang N C, Yu A X, Liang A H, et al. J. Appl. Polym. Sci., 2013,130(1):579-586

    35. [35]

      [35] Wang X Y, Zhong J M, Wang Y M, et al. Carbon, 2006,44 (8):1560-1564

    36. [36]

      [36] Mesalhy O, Lafdi K, Elgafy A. Carbon, 2006,44(10):2080-2088

    37. [37]

      [37] Sihn S, Ganguli S, Anderson D P, et al. Compos. Sci. Technol., 2012,72(7):767-773

    38. [38]

      [38] Wang X D, Sun D, Duan Y Y, et al. J. Non-Cryst. Solids, 2013,375:31-39

    39. [39]

      [39] Xu L, Jiang Y G, Feng J Z, et al. Ceram. Int., 2015,41(1): 437-442

    40. [40]

      [40] Li X, Basso M C, Braghiroli F L, et al. Carbon, 2012,50(5): 2026-2036

    41. [41]

      [41] Gallego N C, Klett J W. Carbon, 2003,41(7):1461-1466

    42. [42]

      [42] SHEN Zeng-Min(沈曾民), GE Min(戈敏), CHI Wei-Dong (迟伟东), et al. New Carbon Mater.(新型炭材料), 2006,21 (3):193-201

  • 加载中
    1. [1]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    2. [2]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    3. [3]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    4. [4]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    5. [5]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    6. [6]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    7. [7]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    8. [8]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    9. [9]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    10. [10]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    11. [11]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    12. [12]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    13. [13]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    14. [14]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    15. [15]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    16. [16]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    17. [17]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    18. [18]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    19. [19]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    20. [20]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

Metrics
  • PDF Downloads(0)
  • Abstract views(494)
  • HTML views(75)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return