Citation: QI Dan-Dan, ZHANG Fang, JIANG Da-Guang, QIN De-Cai, ZHANG Xiao-Gang. Fe2O3 Nanoparticles Prepared by Solid-State Thermolysis of Fe-Based Coordination Polymer and Their Enhanced Lithium Storage Properties[J]. Chinese Journal of Inorganic Chemistry, ;2015, (6): 1171-1176. doi: 10.11862/CJIC.2015.159 shu

Fe2O3 Nanoparticles Prepared by Solid-State Thermolysis of Fe-Based Coordination Polymer and Their Enhanced Lithium Storage Properties

  • Received Date: 20 January 2015
    Available Online: 7 March 2015

    Fund Project: 江苏省自然科学基金(No.BK2011740) (No.BK2011740)

  • α-Fe2O3 nanoparticles with uniform size were synthesized via a complex-precursor strategy. First, iron ion-based coordination polymer was synthesized via a solvothermal method by using p-benzene-dicarboxylic acid (p-H2bdc) as ligand. Second, α-Fe2O3 nanoparticles with uniform size were prepared via a solid state pyrolysis procedure. The synthesized coordination polymer and Fe2O3 product were characterized by XRD, FT-IR, SEM and TEM respectively. When used as anode material for lithium-ion batteries, the Fe2O3 electrode can deliever a stable reversible capacity of 530 mAh·g-1 after 50 charge-discharge cycles at a current density of 0.1 A·g-1, which showed a higher specific capacity and superior cycle stability.
  • 加载中
    1. [1]

      [1] GUO Wei(郭巍), WU Hang(吴行), ZHENG Zhen-Zhong(郑 振忠), et al. Electronic Components and Materials(电子元 件与材料), 2010,12:31-33

    2. [2]

      [2] Xu J S, Zhu Y J, Chen F. J. Solid State Chem., 2013,199:204-211

    3. [3]

      [3] Lai L, Huang G, Wang X, et al. Carbon, 2011,49:1581-1587

    4. [4]

      [4] Zeng Y, Yao J, Li D, et al. ACS Appl. Mater. Interfaces, 2011,3(1):35-42

    5. [5]

      [5] Poizot P, Laruelle S, Grugeon S. Nature, 2000,407:496-499

    6. [6]

      [6] Deng H, Long D, Liu X, et al. J. Power Sources, 2011,196 (5):3887-3893

    7. [7]

      [7] GU Bao-Xia(顾晓霞), DIAO Xun-Gang(刁训刚), HAO Lei (郝雷). Aerospace Materials and Technology(宇航材料工艺), 2008,3:58-62

    8. [8]

      [8] WANG Zhong-Chun(王忠春), LIU Er-Sheng(刘尔生), CHEN Nai-Sheng(陈耐生), et al. Chinese J. Struc. Chem.(结构化 学), 1996,15(6):450-453

    9. [9]

      [9] Niu M T, Huang F, Cui L F, et al. ACS Nano, 2010,4(2): 681-688

    10. [10]

      [10] ZHANG Ying(张颖), GAO Xue-Ping(高学平), HU Heng(胡 恒), et al. Chinese J. Inorg. Chem.(无机化学学报), 2004,20 (9):1013-1017

    11. [11]

      [11] Chen J, Xu L, Yu T, et al. Adv. Mater., 2005,17:582-587

    12. [12]

      [12] Zhu X J, Zhu Y W, Murali S, et al. ACS Nano, 2011,5(4): 3333-3338

    13. [13]

      [13] Okada J, Yamaki I. J. Ind. Eng. Chem., 2004,10:1104-1113

    14. [14]

      [14] ZHAO Tie-Peng(赵铁鹏), GAO De-Shu(高德淑), LEI Gang-Tie(雷钢铁), et al. Acta Chim. Sinica(化学学报), 2009,67 (17):1957-1961

    15. [15]

      [15] Xu X, Cao R, Chao J, et al. Nano Lett., 2012,12:4988-4991

    16. [16]

      [16] Zhang L, Wu H B, Lou X W. CrystEngComm, 2013,15:9332 -9335

    17. [17]

      [17] Wang B, Chen J S, Lou X W. J. Mater. Chem., 2012,22: 9466-9468

    18. [18]

      [18] Jia X, Chen J J, Xu J H, et al. Chem. Commun., 2012,48: 7410-7412

    19. [19]

      [19] Wang Z, Luan D, Madhavi S, et al. Chem. Commun., 2011, 47:8061-8063

    20. [20]

      [20] Kang N, Park J H, Choi J, et al. Angew. Chem. Int. Ed., 2012,51:6626-6632

    21. [21]

      [21] Zhu T, Yang X H, Yang H G, et al. J. Am. Chem. Soc., 2010,132:13162-13168

    22. [22]

      [22] Li C C, Chen L B, Wang T H, et al. Chem. Eur. J., 2010,16: 5215-5221

    23. [23]

      [23] Jiang H L, Xu Q. Chem. Commun., 2011,47(12):3351-3370

    24. [24]

      [24] Morsali A, Masoomi M Y. Coord. Chem. Rev., 2012,256: 2921-2943

    25. [25]

      [25] Abhik B, Upendra S, Madhavi S, et al. Nano Energy, 2013, 2(6):1158-1163

    26. [26]

      [26] Xu X D, Cao R G, Cho J, et al. Nano Lett., 2012,12:4988-4991

    27. [27]

      [27] ZHANG Fang(张防), HAO Liang(郝亮), ZHANG Xiao-Gang (张校刚), et al. Chinese J. Inorg. Chem.(无机化学学报), 2010,26(5):827-831

    28. [28]

      [28] Zhang F, Hao L, Zhang X G. Mater. Chem. Phys., 2011,126: 853-858

    29. [29]

      [29] Arenas J F, Marcos J I. Spectrochim. Acta, Part A, 1980,36 (12):1075-1081

    30. [30]

      [30] Baca S G, Gherco O A, Gdaniec M, et al. Inorg. Chim. Acta, 2004,357(12):3419-3429

    31. [31]

      [31] Nakamoto K, Translated by HUANG De-Ru(黄德如), WANG Ren-Qing(汪仁庆). Infrared and Raman Spectra of Inorganic and Coordination Compounds. 3rd Ed.(无机和配位化合物 的红外和拉曼光谱.3版). Beijing: Chemical Industry Press, 1986.

    32. [32]

      [32] Banerjee A, Bhatnagar S, Ogale S, et al. Nano Energy, 2013, 2(5):890-896

    33. [33]

      [33] Aravindan V, Gnanaraj J, Liu H K, et al. Chem. Eur. J., 2011,17:14326-14346

    34. [34]

      [34] Park C M, Kim J H, Sohn H J, et al. Chem. Soc. Rev., 2010,39:3115-3141

    35. [35]

      [35] Geissler W, Schmidt M, Aurbach D, et al. Electrochem. Commun., 2003,5:946-951

    36. [36]

      [36] Wang Z, Luan D, Hu Y, et al. Energy Environ. Sci., 2012,5: 5252-5258

    37. [37]

      [37] Reddy M V, Yu T, Shen Z X, et al. Adv. Funct. Mater., 2007,17:2792-2796

    38. [38]

      [38] Wu X L, Guo Y G, Wan L J, et al. J. Phys. Chem. C, 2008, 112:16824-16829

    39. [39]

      [39] Wang B, Chen J S, Wu H B, et al. J. Chem. Soc., 2011,133: 17146-17148

    40. [40]

      [40] Chen J S, Zhu T, Yang X H, et al. J. Chem. Soc., 2010,132: 13162-13167

    41. [41]

      [41] Kim H S, Piao Y, Kang S H, et al. Electrochem. Commun., 2010,12:382-386

    42. [42]

      [42] Zaghib K, Goodenough J B, Mauger A, et al. J. Power Sources, 2009,194:1021-1023

  • 加载中
    1. [1]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    2. [2]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    3. [3]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    4. [4]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    5. [5]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    6. [6]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    7. [7]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    8. [8]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    9. [9]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    10. [10]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    11. [11]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    12. [12]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    13. [13]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    14. [14]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    15. [15]

      Zhenzhong MEIHongyu WANGXiuqi KANGYongliang SHAOJinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081

    16. [16]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    17. [17]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    18. [18]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    19. [19]

      Gengchen GuoTianyu ZhaoRuichang SunMingzhe SongHongyu LiuSen WangJingwen LiJingbin Zeng . Au-Fe3O4 dumbbell-like nanoparticles based lateral flow immunoassay for colorimetric and photothermal dual-mode detection of SARS-CoV-2 spike protein. Chinese Chemical Letters, 2024, 35(6): 109198-. doi: 10.1016/j.cclet.2023.109198

    20. [20]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

Metrics
  • PDF Downloads(2)
  • Abstract views(259)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return