Citation: LU Yong-Juan, JIA Jun-Hong. Preparation and Photoelectrical Properties of Bi2S3 Quantum Dots Sensitized TiO2 Nanorod-Arrays[J]. Chinese Journal of Inorganic Chemistry, ;2015, (6): 1091-1098. doi: 10.11862/CJIC.2015.155 shu

Preparation and Photoelectrical Properties of Bi2S3 Quantum Dots Sensitized TiO2 Nanorod-Arrays

  • Corresponding author: LU Yong-Juan, 
  • Received Date: 14 October 2014
    Available Online: 11 March 2015

    Fund Project: 中央高校基本业务费专项资金项目(No.31920140083) (No.31920140083)引进人才教学科研启动费(No.xbmuyjrc1201204)资助项目。 (No.xbmuyjrc1201204)

  • Hydrothermally synthesized TiO2 nanorod arrays on FTO glass substrates were functionalized with uniform Bi2S3 quantum dots by CBD method combined with self-assembled monolayers(SAMs). The surface morphology, structure, optical and photoelectrochemical behaviors of the TiO2/Bi2S3 nanorod arrays are considered. The results that uniform Bi2S3 thin films were deposited on the surface of TiO2 nanorods modified by APTS SAMs. The key of the technology is that the APTS SAM possessing -NH2 functional groups can be employed to control nucleation. Moreover, the deposition time of Bi2S3 thin film plays a key role in the visible light absorption as well as photoelectric response of TiO2/Bi2S3 nanorod arrays. It reveals that, with the increase of the deposition time, the Jsc of composite thin film first increased and then decreased, and a Jsc maximum value of 0.13 mA·cm-2 reached at 20 min deposition of Bi2S3. The increase of Jsc for the initial deposition time could be interpreted as the result of enhanced absorption in the visible light range. Further increase the deposition time resulted in an obvious decrease in Jsc. This phenomenon might be attributed to Bi2S3 overloading on the surface of TiO2 resulted in aggregations and conglomerations, leading to more surface defects and recombination of photoexcited carrier.
  • 加载中
    1. [1]

      [1] Falaras P, Gratzel M, Nazeemddin M, et al. J. Electrochem. Soc., 1993,140:92-94

    2. [2]

      [2] Barbe C J, Arendse F, Comte P. J. Am. Ceram. Soc., 1997, 80:3157-3171

    3. [3]

      [3] Mor G K, Shankar K, Paulose M, et al. Nano Lett., 2006,6: 215-218

    4. [4]

      [4] Kai Z, Nathan R N, Miedaner A, et al. Nano Lett., 2007,7: 69-74

    5. [5]

      [5] Zhao J, Wang X, Chen R. Mater. Lett., 2005,59:2329-2332

    6. [6]

      [6] Adachi M, Murata Y, Okada I, et al. J. Electrochem. Soc., 2003,150:G488-G493

    7. [7]

      [7] Paulose M, Shankar K, Varghese O K, et al. Nanotechnology, 2006,17:1446-1448

    8. [8]

      [8] Paulose M, Varghese O K, Mor G K, et al. Nanotechnology, 2006,17:398-402

    9. [9]

      [9] Adachi M, Murata Y, Harada M, et al. Chem. Lett., 2000,29: 942-943

    10. [10]

      [10] Chu S Z, Inoue S, Wada K, et al. J. Phys. Chem. B, 2003, 107:6586-6589

    11. [11]

      [11] Zhang Z, Shimizu T, Senz S. Adv. Mater., 2009,21:2824-2828

    12. [12]

      [12] Michailowski A, Almlwai D, Cheng G S, et al. Chem. Phys. Lett., 2001,349:1-5

    13. [13]

      [13] Wu J J, Yu C C. J. Phys. Chem. B, 2004,108:3377-3379

    14. [14]

      [14] Feng X J, Shankar K, Varghese O K, et al. Nano Lett., 2008,8:3781-3786

    15. [15]

      [15] Liu B, Aydil E S. J. Am. Chem. Soc., 2009,131:3985-3990

    16. [16]

      [16] Robel I, Subramanian V, Kuno M, et al. J. Am. Chem. Soc., 2006,128:2385-2393

    17. [17]

      [17] LIU Fei-La(刘非拉), XIAO Peng(肖鹏), ZHOU Ming(周明), et al. Chinese J. Inorg. Chem.(无机化学学报), 2012,28(5): 861-872

    18. [18]

      [18] Nozik A J, Beard M C, Luther J M, et al. Chem. Rev., 2010, 110:6873-6890

    19. [19]

      [19] Vogel R, Hoyer P, Weller H. J. Phys. Chem., 1994,98:3183-3188

    20. [20]

      [20] LI Jing(李静). Thesis for the Master of Hubei University(湖 北大学硕士学位论文), 2013.

    21. [21]

      [21] Peter L M, Waggett J P, et al. J. Phys. Chem. B, 2003,107: 8378-8381

    22. [22]

      [22] Roemermahler J, Bremer F J. Adv. Mater., 1995,7:7-9

    23. [23]

      [23] Aizenberg J, Black A J, Whitesides G H. J. Am. Chem. Soc., 1999,121:4500-4509

    24. [24]

      [24] Liufu S, Chen L D. J. Phys. Chem. C, 2008,112:12085-12088

    25. [25]

      [25] Liufu S, Chen L D, et al. J. Phys. Chem. B, 2006,110:24054 -24061

    26. [26]

      [26] Lu Y, Jia J, Yi G. CrystEngComm, 2012,14:3433-3440

    27. [27]

      [27] Cao C, Hu C, Wang X. Sensor Actuat B, 2011,156:114-119

    28. [28]

      [28] Coughlin K M, Nevins J S, Watson D F. ACS Appl. Mater. Interfaces, 2013,5:8649-8654

    29. [29]

      [29] ZHU Gang-Qiang(朱刚强), HUANG Xi-Jin(黄锡金), FEN Bo(冯波), et al. Chinese J. Inorg. Chem.(无机化学学报), 2010,26(11):2041-2046

    30. [30]

      [30] Wang H, McNellis E R, Kinge S, et al. Nano Lett., 2013,13: 5311-5315

    31. [31]

      [31] Ardalan P, Brennan T P, Bakke J R, et al. ACS Nano, 2011,5: 1495-1504

    32. [32]

      [32] Cai F G, Yang F, Jia Y F, et al. J. Mater. Sci., 2013,48: 6001-6007

    33. [33]

      [33] Nasr C, Hotchandani S, Kim W Y, et al. J. Phys. Chem. B, 1997,101:7480-7487

    34. [34]

      [34] Sant P A, Kamat P V. Phys. Chem. Chem. Phys., 2002,4: 198-203

    35. [35]

      [35] Yang L, Luo S, Liu R, et al. J. Phys. Chem. C, 2010,114: 4783-4789

  • 加载中
    1. [1]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    2. [2]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    3. [3]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    4. [4]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    5. [5]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    6. [6]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    7. [7]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    8. [8]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    9. [9]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    10. [10]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    11. [11]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    12. [12]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    13. [13]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    14. [14]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    15. [15]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    16. [16]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

    17. [17]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    18. [18]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    19. [19]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    20. [20]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

Metrics
  • PDF Downloads(0)
  • Abstract views(313)
  • HTML views(61)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return