Citation: SUN Jing, SONG Xing-Dong, CHEN Wen-Xiu, ZHAO Xuan-Hao, CHEN Jia-Xi, JIA Zhen-Bin, HAO Hong-Qing. Synthesis, Crystal Structure and Interactions with G-Quadruplex Structures of [Ru(dpq)2L]4+[J]. Chinese Journal of Inorganic Chemistry, ;2015, (5): 865-872. doi: 10.11862/CJIC.2015.142 shu

Synthesis, Crystal Structure and Interactions with G-Quadruplex Structures of [Ru(dpq)2L]4+

  • Corresponding author: SUN Jing,  HAO Hong-Qing, 
  • Received Date: 28 November 2014
    Available Online: 22 March 2015

    Fund Project: 国家自然科学基金(No.21101034) (No.21101034)广东省优秀青年教师培养计划项目(No.Yq2013086,Yq2013151) (No.Yq2013086,Yq2013151)东莞市科技计划项目(No.2011108102046) (No.2011108102046)广东省大学生创新课题(No.1057112037)项目,2014年广东省本科高校教学质量与教学改革工程立项建设项目资助。 (No.1057112037)

  • Based on cis-[Ru(dpq)2Cl2]·2H2O (dpq=dipyrido[3,2-d:2',3'-f]quinoxaline) and 5,5'-di(1-(triethylamm-onio)methyl)-2,2'-dipyridyl cation ligand (L), the complex [Ru(dpq)2L](PF6)4 was synthesized and structurally characterized. The interactions of the complex with different G-quadruplexes were investigated. FRET melting assay proved that the complex bonds more strongly to h-telo than to promoters, such as c-myc and bcl2. CD studies show that Ru(Ⅱ) complex can induce the formation of parallel G-quadruplex of h-telo in the absence of Na+ or K+. Results of absorption and emission titration indicated that the complex has a higher DNA affinity with h-telo in K+ buffer than in Na+ buffer.
  • 加载中
    1. [1]

      [1] Huppert J L, Balasubramanian S. Nucleic Acids Res., 2005, 33:2908-2916

    2. [2]

      [2] Huppert J L. Chem. Soc. Rev., 2008,37:1375-1384

    3. [3]

      [3] Murat P, Singh Y, Defrancq E. Chem. Soc. Rev., 2011,40: 5293-5307

    4. [4]

      [4] Huppert J L, Balasubramanian S. Nucleic Acids Res., 2007, 35:406-413

    5. [5]

      [5] Todd A K, Johnston M, Neidle S. Nucleic Acids Res., 2005, 33:2901-2907

    6. [6]

      [6] Reed J E, White A J P, Neidleb S, et al. Dalton Trans., 2009: 2558-2568

    7. [7]

      [7] Kim N W, Piatyszek M A, Prowse K R, et al. Science, 1994, 266:2011-2015

    8. [8]

      [8] Shay J W, Bacchetti S. Eur. J. Cancer, 1997,33:787-791

    9. [9]

      [9] Kelland L R. Anticancer Drugs, 2000,11:503-513

    10. [10]

      [10] Suntharalingam K, Gupta D, Miguel P J S, et al. Chem. Eur. J., 2010,16:3613-3616

    11. [11]

      [11] Finkel T, Serrano M, Blasco M A. Nature, 2007,448:767-774

    12. [12]

      [12] Bertrand H, Monchaud D, Cian A D, et al. Org. Biomol. Chem., 2007,5:2555-2559

    13. [13]

      [13] SUN Jing(孙静), CHEN Jia-Xi(陈嘉曦), LIN Hai-Ling(林海 玲), et al. Chinese J. Inorg. Chem.(无机化学学报), 2012, 28:45-49

    14. [14]

      [14] Jain A K, Paul A, Maji B, et al. J. Med. Chem., 2012,55: 2981-2993

    15. [15]

      [15] Chen X, Wu J H, Lai Y W, et al. Dalton Trans., 2013:4386-4397

    16. [16]

      [16] Shi S, Huang H L, Gao X, et al. J. Inorg. Biochem., 2013, 121:19-27

    17. [17]

      [17] An Y, Lin Y Y, Wang H, et al. Dalton Trans., 2006:2066-2071

    18. [18]

      [18] Paw W, Eisenberg R. Inorg. Chem., 1997,36:2287-2293

    19. [19]

      [19] Collins J G, Sleeman A D, Aldrich-Wright J R, et al. Inorg. Chem., 1998,37:3133-3141

    20. [20]

      [20] Deshpande M S, Kumbhar A A, Kumbhar A S, et al. Bioco-njugate Chem., 2009,20:447-459

    21. [21]

      [21] Sheldrick G M. SADABS, University of Göttingen, Germany, 1996.

    22. [22]

      [22] Sheldrick G M. SHELXS-97 and SHELXL-97, University of Göttingen, Germany, 1996.

    23. [23]

      [23] Haq I, Lincoln P, Suh D, et al. J. Am. Chem. Soc., 1995, 117:4788-4796

    24. [24]

      [24] Haq I, Trent J O, Chowdhry B Z, et al. J. Am. Chem. Soc., 1999,121:1768-1779

    25. [25]

      [25] Santra B K, Menon M, Pal C K, et al. Dalton Trans., 1997: 1387-1393

    26. [26]

      [26] Sun J, Wu S, An Y, et al. Polyhedron, 2008,27:2845-2850

    27. [27]

      [27] Rillema D P, Jones D S, Woods C, et al. Inorg. Chem., 1992,31:2935-2938

    28. [28]

      [28] Khatua S, Samanta D, Bats J W, et al. Inorg. Chem., 2012, 51:7075-7086

    29. [29]

      [29] Mergny J L, Maurizot J C. ChemBioChem, 2001,2:124-132

    30. [30]

      [30] Rezler E M, Seenisamy J, Bashyam S, et al. J. Am. Chem. Soc., 2005,127:9439-9447

    31. [31]

      [31] Ambrus A, Chen D, Dai J X, et al. Nucleic Acids Res., 2006,34:2723-2735

    32. [32]

      [32] Xu Y, Noguchi Y, Sugiyama H. Bioorg. Med. Chem., 2006, 14:5584-5591

    33. [33]

      [33] Antonacci C, Chaires J B, Sheardy R D. Biochemistry, 2007,46:4654-4660

    34. [34]

      [34] Dai J X, Punchihewa C, Ambrus A, et al. Nucleic Acids Res., 2007,35:2440-2450

    35. [35]

      [35] Li W, Wu P, Ohmichi T, et al. FEBS Lett., 2002,526:77-81

    36. [36]

      [36] Zheng X H, Zhong Y F, Tan C P, et al. Dalton Trans., 2012: 11807-11812

    37. [37]

      [37] Chen L M, Liu J, Chen J C, et al. J. Inorg. Biochem., 2008, 102:330-341

    38. [38]

      [38] Carter M T, Rodriguez M, Bard A J. J. Am. Chem. Soc., 1989,111:8901-8911

    39. [39]

      [39] Maheswari P U, Palaniandavar M. J. Inorg. Biochem., 2004, 98:219-230

    40. [40]

      [40] Shi S, Geng X T, Zhao J, et al. Biochimie, 2010,92:370-377

    41. [41]

      [41] Rajput C, Rutkaite R, Swanson L, et al. Chem. Eur. J., 2006,12:4611-4619

  • 加载中
    1. [1]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    2. [2]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    3. [3]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    4. [4]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    5. [5]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    6. [6]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    7. [7]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    8. [8]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    9. [9]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    10. [10]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    11. [11]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    12. [12]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    13. [13]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    14. [14]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    15. [15]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    16. [16]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    17. [17]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    18. [18]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    19. [19]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    20. [20]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

Metrics
  • PDF Downloads(0)
  • Abstract views(408)
  • HTML views(46)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return