Citation:
ZHAN Hong-Quan, JIANG Xiang-Ping, LI Xiao-Hong, ZHU Mian-Xia, LUO Zhi-Yun. Formation Mechanisms of Monodisperse Strontium Titanate Nanocrystalline[J]. Chinese Journal of Inorganic Chemistry,
;2015, (5): 888-894.
doi:
10.11862/CJIC.2015.137
-
In the mixed-solution of ethanol and water, the monodisperse strontium titanate (STO) nanocrys-tallines were synthesized by hydrothermal method. The powder X-ray diffraction (XRD) patterns results revealed that the nanocrystallines crystallized in the cubic phase, and the crystallization of the products became more significant with the reaction continuing. The particle size of about 70 nm and cubic morphology were further evidenced by the scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The growth process of the nanocrystallines was studied by SEM, TEM, high resolution transmission electron microscopy (HRTEM) and electron diffraction(ED) spectroscopy in detail. The results have discovered that as follow: first, the nucleus of STO was produced by the diffusion reaction between the precursors; then, the nuclei orientedly attached by each other and the nanoparticle-aggregation came into being; last, the nanoparticle-aggregations were converted into the single crystallines of STO under Ostwald ripening mechanisms. The growth process of “diffusion reaction—oriented attachment—Ostwald ripening” has discovered the formation mechanism of STO nanocrystalline. The results of kinetics modeling with Johnson-Mehl-Avrami(JMA) equation show that the diffusion reaction is dominant at the early stage and the active energy is 15.79 kJ·mol-1.
-
-
-
[1]
[1] Ouyang S X, Tong H, Umezawa N, et al. J. Am. Chem. Soc., 2012,134(4):1974-1977
-
[2]
[2] Sun J Y, Gao T, Song X J, et al. J. Am. Chem. Soc., 2014, 136(18):6574-6577
-
[3]
[3] Shen S, Jia Y S, Fan F T, et al. Chin. J. Catal., 2013,34(11): 2036-2040
-
[4]
[4] LIU Jian(刘剑), TAN Guo-Qiang(谈国强), MIAO Hong-Yan (苗红雁), et al. Chinese J. Inorg. Chem.(无机化学学报), 2009,25(3):517-521
-
[5]
[5] LI Hui-Quan(李慧泉), CUI Yu-Min(崔玉民), WU Xing-Cai (吴兴才), et al. Chinese J. Inorg. Chem.(无机化学学报), 2012,28(12):2597-2604
-
[6]
[6] Iwashina K, Kudo A. J. Am. Chem. Soc., 2011,133(34):13272-13275
-
[7]
[7] Zou F, Jiang Z, Qin X Q, et al. Chem. Commun., 2012,48(68): 8514-8516
-
[8]
[8] Wang Q, Hisatomi T, Ma S S K, et al. Chem. Mater., 2014, 26(14):4144-4150
-
[9]
[9] Kuang Q, Yang S H. ACS Appl. Mater. Interfaces, 2013,5 (9):3683-3690
-
[10]
[10] Feng L L, Zou X X, Zhao J, et al. Chem. Commun., 2013,49 (84):9788-9790
-
[11]
[11] CHEN Wan-Ping(陈万平), ZHU Qi-An(朱启安), SONG Fang-Ping(宋方平), et al. Chinese J. Inorg. Chem.(无机化 学学报), 2006,22(11):2105-2108
-
[12]
[12] CUI Bin(崔斌), WANG Xun(王训), LI Ya-Dong(李亚栋). Chem. J. Chinese Universities(高等学校化学学报), 2007, 28(1):1-5
-
[13]
[13] Xu G, Huang X J, Zhang Y F, et al. CrystEngComm, 2013, 15(36):7206-7211
-
[14]
[14] Moreira M L, Longo V M, Avansi W, et al. J. Phys. Chem. C, 2012,116(46):24792-24808
-
[15]
[15] Calderone V R, Testino A, Buscaglia M T, et al. Chem. Mater., 2006,18(6):1627-1633
-
[16]
[16] Modeshia D R, Walton R I. Chem. Soc. Rev., 2010,39(11): 4303-4325
-
[17]
[17] SHI Er-Wei(施尔畏), CHEN Zhi-Zhan(陈之战), YUAN Ru-Lin(元如林), et al. Hydrothermal Crystallography(水热结晶 学). Beijing: Science Press, 2004.
-
[18]
[18] Zhan H Q, Yang X F, Wang C M, et al. Cryst. Growth Des., 2012,12(3):1247-1253
-
[19]
[19] ZHAN Hong-Quan(展红全), JIANG Xiang-Ping(江向平), LI Xiao-Hong(李小红), et al. Acta Phys.-Chim. Sin.(物理化学 学报), 2011,27(12):2927-2932
-
[20]
[20] Zhang S C, Liu J X, Han Y X, et al. Mater. Sci. Eng. B, 2004,110(1):11-17
-
[21]
[21] Colfen H, Antonietti M. Angew. Chem. Int. Ed., 2005,44 (35):5576-5591
-
[22]
[22] FENG Yi(冯怡), MA Tian-Yi(马天翼), LIU Lei(刘蕾), et al. Sci. China Ser. B: Chem.(中国科学B), 2009,39(9):864-886
-
[23]
[23] Liu Z, Wen X D, Wu X L, et al. J. Am. Chem. Soc., 2009, 131(26):9405-9412
-
[24]
[24] Yasui K, Kato K. J. Phys. Chem. C, 2012,116(1):319-324
-
[25]
[25] Souza A E, Santos G T A, Barra B C, et al. Cryst. Growth Des., 2012,12(11):5671-5679
-
[26]
[26] Nassif N, Pinna N, Gehrke N, et al. Proc. Natl. Acad. Sci. USA, 2005,102(36):12653-12655
-
[27]
[27] Wei X, Xu G, Ren Z H, et al. J. Am. Ceram. Soc., 2010,93 (5):1297-1305
-
[28]
[28] Croker D, Loan M, Hodnett B K. Cryst. Growth Des., 2009,9 (5):2207-2213
-
[29]
[29] LUO Shi-Yong(罗世永), ZHANG Jia-Yun(张家芸), ZHOU Tu-Ping(周土平). J. Chin. Ceram. Soc.(硅酸盐学报), 2000, 28(5):458-461
-
[1]
-
-
-
[1]
Yu Peng , Jiawei Chen , Yue Yin , Yongjie Cao , Mochou Liao , Congxiao Wang , Xiaoli Dong , Yongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087
-
[2]
Nian LIU , Biao ZHENG , Kun WANG , Chunbao ZHENG , Qingyan HAN , Enjie HE , Saidong XUE . Synthesis and spectroscopic performance of double perovskite Li0.5La0.5MgSrWO6∶Mn4+ phosphors for plant growth lighting. Chinese Journal of Inorganic Chemistry, 2026, 42(1): 129-140. doi: 10.11862/CJIC.20250069
-
[3]
Haiying Jiang , Huilin Guo , Yongliang Cheng , Tongyu Xu , Jiquan Liu , Mingli Peng . Teaching Design of the Nernst Equation Based on the “Flipped Classroom” Method. University Chemistry, 2024, 39(8): 84-90. doi: 10.3866/PKU.DXHX202312091
-
[4]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009
-
[5]
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . Accelerated Interfacial Electron Transfer in Perovskite Solar Cell by Ammonium Hexachlorostannate Modification and fs-TAS Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-0. doi: 10.3866/PKU.WHXB202402006
-
[6]
Shantao Zhang , TianAo Hou , Yandong Wang , Zhimin Fang , Yu Wu , Haolin Wang , Tao Chen , Shuang Chen , Wenhua Zhang , Shengzhong (Frank) Liu , Shangfeng Yang . π-Conjugation-extended dinaphthocarbazole phosphonic acid as a hole-selective layer for inverted perovskite solar cells. Acta Physico-Chimica Sinica, 2026, 42(3): 100194-0. doi: 10.1016/j.actphy.2025.100194
-
[7]
Siming Bian , Sijie Luo , Junjie Ou . Application of van Deemter Equation in Instrumental Analysis Teaching: A New Type of Core-Shell Stationary Phase. University Chemistry, 2025, 40(3): 381-386. doi: 10.12461/PKU.DXHX202406087
-
[8]
Fengmei Wang , Xin Zhang , Hong Yan , Xiangyu Xu , Guirong Wang . Inverted 'Π' Graphic Memory Method for Thermodynamic Basic Equations and the Application in Teaching Practice. University Chemistry, 2025, 40(11): 369-375. doi: 10.12461/PKU.DXHX202412087
-
[9]
Wenqi Gao , Xiaoyan Fan , Feixiang Wang , Zhuojun Fu , Jing Zhang , Enlai Hu , Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026
-
[10]
Yerong Chen , Bingbin Yang , Xinglei He , Yuqi Lin , Keyin Ye . Enzyme-Directed Evolution Enables Bioconversion of Organosilicon Compounds. University Chemistry, 2025, 40(10): 121-129. doi: 10.12461/PKU.DXHX202411054
-
[11]
Wenliang Wang , Weina Wang , Sufan Wang , Tian Sheng , Tao Zhou , Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084
-
[12]
Gengjia Chen , Junjie Ou . Application of the van Deemter Equation in Instrumental Analysis Teaching: A Case of Organic Polymer Monolithic Columns. University Chemistry, 2025, 40(11): 362-368. doi: 10.12461/PKU.DXHX202502003
-
[13]
Huan LI , Shengyan WANG , Long Zhang , Yue CAO , Xiaohan YANG , Ziliang WANG , Wenjuan ZHU , Wenlei ZHU , Yang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088
-
[14]
Yajuan Xing , Hui Xue , Jing Sun , Niankun Guo , Tianshan Song , Jiawen Sun , Yi-Ru Hao , Qin Wang . Cu3P-Induced Charge-Oriented Transfer and Surface Reconstruction of Ni2P to Achieve Efficient Oxygen Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(3): 2304046-0. doi: 10.3866/PKU.WHXB202304046
-
[15]
Shengjuan Huo , Xiaoyan Zhang , Xiangheng Li , Xiangning Li , Tianfang Chen , Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127
-
[16]
Qingying Gao , Tao Luo , Jianyuan Su , Chaofan Yu , Jiazhu Li , Bingfei Yan , Wenzuo Li , Zhen Zhang , Yi Liu . Refinement and Expansion of the Classic Cinnamic Acid Synthesis Experiment. University Chemistry, 2024, 39(5): 243-250. doi: 10.3866/PKU.DXHX202311074
-
[17]
Lanjun Cheng , Xinyuan Wang , Jie An , Xiang Wu , Chengfeng Zhu , Yanming Fu , Yougui Li . Improvement of the Resolution Experiment of Racemic Tartaric Acid. University Chemistry, 2025, 40(7): 277-285. doi: 10.12461/PKU.DXHX202408010
-
[18]
Zhi Zheng , Feiyang Liu , Junlong Zhao . D-Amino Acids and Mirror-Image Proteins. University Chemistry, 2026, 41(2): 353-359. doi: 10.12461/PKU.DXHX202505017
-
[19]
Wenwei Zeng , Qingyu Sun , Mengxiang Liang , Lirong Lin , Laiying Zhang . Unveiling Anti-Counterfeiting Secrets: Excitation-Dependent Luminescence in Sb3+-Doped Perovskite Materials. University Chemistry, 2026, 41(2): 375-384. doi: 10.12461/PKU.DXHX202503036
-
[20]
Xinyu ZENG , Guhua TANG , Jianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(806)
- HTML views(70)
Login In
DownLoad: