Citation: LI Na, JIANG Yan-Jiao, QIAO Yi-Ming, ZHOU Dan-Hong. Theoretical Calculation on the Structure and Vibratioanl Spectra of Framework Titanium Located in Sinusoidal Channel of Ti-MWW[J]. Chinese Journal of Inorganic Chemistry, ;2015, (5): 901-907. doi: 10.11862/CJIC.2015.124 shu

Theoretical Calculation on the Structure and Vibratioanl Spectra of Framework Titanium Located in Sinusoidal Channel of Ti-MWW

  • Corresponding author: ZHOU Dan-Hong, 
  • Received Date: 10 November 2014
    Available Online: 5 March 2015

    Fund Project: 国家自然科学基金(No.21343010)资助项目。 (No.21343010)

  • Density functional theory was applied to study the structure and vibratioanl spectra of framework titanium located in the 10-membered ring channel of Ti-MWW. The calculations were carried out at B3LYP/6-31G(d,p) level of theory based on the 36Tcluster models, leading to the results that the [Ti(OSi)4] species prefer to locate at the T3 site. The stretching vibrations correlated to [Ti(OSi)4] occur between 924~987 cm-1, including three vibrational modes as the collection of asymmetric stretching motions of four Ti-O-Si centred on tetrahedral Ti(Ⅳ) center, in which the strongest band at 958 cm-1 is attributed to the Ti-specific vibrational frequency. The 960 cm-1 band is absent from the Ti-species at the T2 and T8 sites. Adsorption of H2O on Ti(OSi)4 has no influence on the 960 cm-1 band. The hydrolysis of [Ti(OSi)4] resulted in [Ti(OSi)3OH], showing the Ti-specific vibrational frequency shifted to 969 cm-1. In addition, we also explored the structures and vibrational spetra of framework boron and hydroxyl nest. The calculated frequencies are in good agreement with the reported experimental values.
  • 加载中
    1. [1]

      [1] Clerici G M, Bellussi G, Romano U. J. Catal., 1991,129:159-167

    2. [2]

      [2] Lane B S, Burgess K. Chem. Rev., 2003,103:2457-2474

    3. [3]

      [3] Bordiga S, Bonino F, Damin A, et al. Phys. Chem. Chem. Phys., 2007,9(35):4854-4878

    4. [4]

      [4] CAO Guo-Ying(曹国英), LI Hong-Yuan(李宏愿), XIA Qing-Hua(夏清华), et al. Chinese J. Catal.(催化学报), 1995,16 (3):217-221

    5. [5]

      [5] Thangaraj A, Sivasanker S, Ratnasamy P. J Catal., 1991,131 (2):394-400

    6. [6]

      [6] Wu P, Tatsumi T, Komatsu T T, et al. J. Phys. Chem. B, 2001,105(15):2897-2905

    7. [7]

      [7] Wu P, Tatsumi T, Komatsu T, et al. J. Catal., 2001,202:245-255

    8. [8]

      [8] Wu P, Tatsumi T. Chem. Commun., 2001,10:897-898

    9. [9]

      [9] Leonowicz M E, Lawton J A, Lawton S L, et al. Science, 1994,264:1910-1913

    10. [10]

      [10] Lawton S L, Leonowicz M E, Partridge P D, et al. Microporous Mesoporous Mater., 1998,23:109-117

    11. [11]

      [11] Wu P, Nuntasri D, Ruan J F, et al. J. Phys. Chem. B, 2004, 108(50):19126-19131

    12. [12]

      [12] Wu P, Tatsumi T. J. Phys. Chem. B, 2002,106(4):748-753

    13. [13]

      [13] Clerici M G, Ingallina P. J. Catal., 1993,140:71-83

    14. [14]

      [14] Tatsumi T, Nakamura M, Yuasa K, et al. Chem. Lett., 1990, 19:297-298

    15. [15]

      [15] Fan W, Wu P, Tatsumi T. J. Catal., 2008,256:62-73

    16. [16]

      [16] XIE Wei(谢伟), LIU Yue-Ming(刘月明), WANG Ling-Ling (汪玲玲), et al. Chinese J. Catal.(催化学报), 2010,31(5): 502-513

    17. [17]

      [17] Ratnasamy P, Srinivas D, Knozinger H. Adv. Catal., 2004, 48:1-169

    18. [18]

      [18] Notari B. Adv. Catal., 1996,41:253-334

    19. [19]

      [19] Vayssilov G N. Catal. Rev. Sci. Eng., 1997,39(3):209-251

    20. [20]

      [20] Wu P, Ruan J F, Wang L L, et al. J. Am. Chem. Soc., 2008, 130(26):8178-8187

    21. [21]

      [21] Camblor M A, Corma A, Pérez-Pariente J. J. Chem. Soc. Chem. Commun., 1993:557-559

    22. [22]

      [22] Scarano D, ZecchinaA, Bordiga S, et al. J. Chem. Soc. Faraday Trans., 1993,89:4123-4130

    23. [23]

      [23] Ruan J, Wu P, Slater B, et al. Angew. Chem. Int. Ed., 2005, 44:6719-6723

    24. [24]

      [24] Yang G, Zhou L J, Liu X C, et al. Chem. Eur. J., 2011,17: 1614-1621

    25. [25]

      [25] Zhou D H, Zhang H J, Zhang J J, et al. Microporous Meso-porous Mater., 2014,195:216-226

    26. [26]

      [26] Becke A D. Phys. Rev. A, 1988,38:3098-3100

    27. [27]

      [27] Lee C, Yang W, Parr R G. Phys. Rev. B, 1988,37:785-790

    28. [28]

      [28] To J, Sokol A A, French S A, et al. J. Phys. Chem. C, 2007, 111(40):14720-14731

    29. [29]

      [29] Ricchiardi G, de Man A J M, Sauer J. Phys. Chem. Chem. Phys., 2000,2:2195-2204

    30. [30]

      [30] Bordiga S, Damin A, Bonino F, et al. J. Phys. Chem. B, 2002,106(38):9892-9905

    31. [31]

      [31] Zhanpeisov N U, Anpo M. J. Am. Chem. Soc., 2004,126: 9439-9444

    32. [32]

      [32] Gallo E, Bonino F, Swarbrick J C, et al. ChemPhysChem, 2013,14:79-83

    33. [33]

      [33] Scott A C, Radom L. J. Phys. Chem., 1996,100:16502-16513

    34. [34]

      [34] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 09, Revision C.01. Gaussian Inc.: Walingford, CT, 2010.

    35. [35]

      [35] Wang Y, Zhou D H, Yang G, et al. J. Phys. Chem. A, 2004, 108:6730-6374

    36. [36]

      [36] Chatterjee A, Iwasaki T, Ebina T, et al. Microporous Meso-porous Mater., 1998,21:421-425

    37. [37]

      [37] Lamberti C, Bordiga S, Arduino D, et al. J. Phys. Chem. B, 1998,102:6382

    38. [38]

      [38] Ricchiardi G, de Man A J M, Sauer J. Phys. Chem. Chem. Phys., 2000,2:2195-2204

    39. [39]

      [39] Gleeson D, Sankar G, Catlow C R A, et al. Phys. Chem. Chem. Phys., 2000,2:4812-4817

    40. [40]

      [40] Cornaro U, Wojciechowski B W. J. Catal., 1989,120(1):182-191

  • 加载中
    1. [1]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    2. [2]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    3. [3]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    4. [4]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    5. [5]

      Jian PengYue JiangShuangyu WuYanran ChengJingyu LiangYixin WangZhuo LiSijie Lin . A nonradical oxidation process initiated by Ti-peroxo complex showed high specificity toward the degradation of tetracycline antibiotics. Chinese Chemical Letters, 2024, 35(5): 108903-. doi: 10.1016/j.cclet.2023.108903

    6. [6]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    7. [7]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    8. [8]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    9. [9]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

    10. [10]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    11. [11]

      Ying HouZhen LiuXiaoyan LiuZhiwei SunZenan WangHong LiuWeijia Zhou . Laser constructed vacancy-rich TiO2-x/Ti microfiber via enhanced interfacial charge transfer for operando extraction-SERS sensing. Chinese Chemical Letters, 2024, 35(9): 109634-. doi: 10.1016/j.cclet.2024.109634

    12. [12]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    13. [13]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    14. [14]

      Yaping WangPengcheng YuanZeyuan XuXiong-Xiong LiuShengfa FengMufan CaoChen CaoXiaoqiang WangLong PanZheng-Ming Sun . Ti3C2Tx MXene in-situ transformed Li2TiO3 interface layer enabling 4.5 V-LiCoO2/sulfide all-solid-state lithium batteries with superior rate capability and cyclability. Chinese Chemical Letters, 2024, 35(6): 108776-. doi: 10.1016/j.cclet.2023.108776

    15. [15]

      Zhenhao WangYuliang TangRuyu LiShuai TianYu TangDehai Li . Bioinspired synthesis of cochlearol B and ganocin A. Chinese Chemical Letters, 2024, 35(7): 109247-. doi: 10.1016/j.cclet.2023.109247

    16. [16]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    17. [17]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    18. [18]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    19. [19]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    20. [20]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

Metrics
  • PDF Downloads(0)
  • Abstract views(299)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return