Citation: CUI Ya-Juan, FANG Rui-Mei, SHANG Hong-Yan, SHI Zhong-Hua, GONG Mao-Chu, CHEN Yao-Qiang. Effect of Support Materials on Property and Catalytic Performance of Pd-Only Three-Way Catalyst[J]. Chinese Journal of Inorganic Chemistry, ;2015, (5): 989-1002. doi: 10.11862/CJIC.2015.120 shu

Effect of Support Materials on Property and Catalytic Performance of Pd-Only Three-Way Catalyst

  • Corresponding author: CHEN Yao-Qiang, 
  • Received Date: 8 November 2014
    Available Online: 13 February 2015

    Fund Project: 国家自然科学基金(No.21173153) (No.21173153)四川省科技厅科技支撑项目(2011GZ0035)资助。 (2011GZ0035)

  • Four kinds of support materials, i.e. a thermally stable material La2O3-Al2O3(LA), three oxygen storage materials CeO2-ZrO2-La2O3-Al2O3(CZLA), CeO2-ZrO2-La2O3+La2O3-Al2O3(CZL+LA) and CeO2-ZrO2-La2O3(CZL) with ceria content of 15%, 33% and 47%, respectively, were prepared by co-precipitation. The corresponding Pd-only catalysts Pd/LA, Pd/CZLA, Pd/CZL+LA and Pd/CZL were obtained by wet-impregnation and further fabricated as three-way catalysts in a monolith form. The support materials were characterized by low temperature nitrogen adsorption-desorption and H2-temperature programmed reduction (H2-TPR). The catalysts were characterized by H2-TPR and XPS, and were evaluated with a simulated automobile exhaust in terms of the relationships of three way performance with the air/fuel operation window and with temperatures. The results indicate that the support material CZLA integrates the advantages of ceria-based and alumina-based materials effectively thus having superior textural property, thermal stability and reduction property. Additionally, Pd/CZLA catalyst shows little difference in low temperature reducibility, surface elemental distribution and elemental oxidation states before and after aging treatment. As a result, Pd/CZLA exhibits the widest air/fuel operation window and the lowest light-off temperature among the four catalysts, especially after aging treatment, the light-off temperature of C3H8, NOx and CO is 370 ℃, 257 ℃, 223 ℃, respectively. Then material CZLA is the most suitable support for Pd-only three-way catalyst compared with the other three supports.
  • 加载中
    1. [1]

      [1] Wang Q Y, Li G F, Zhao B, et al. Appl. Catal. B: Environ., 2010,101(1/2):150-159

    2. [2]

      [2] Matsumoto S I. Catal. Today, 2004,90(3/4):183-190

    3. [3]

      [3] Shelef M, McCabe R W. Catal. Today, 2000,62(1):35-50

    4. [4]

      [4] Kašpar J, Fornasiero P. J. Solid State Chem., 2003,171(1/2): 19-29

    5. [5]

      [5] Farrauto R J, Heck R M. Catal. Today, 1999,51(3/4):351-360

    6. [6]

      [6] Tomašić V, Jović F. Appl. Catal. A: Gen., 2006,311:112-121

    7. [7]

      [7] Gandhi H S, Graham G W, McCabe R W. J. Catal., 2003, 216(1/2):433-442

    8. [8]

      [8] Lan L, Chen S H, Zhao M, et al. J. Mol. Catal. A:Chem. 2014,394:10-21

    9. [9]

      [9] Talo A, Lahtinen J, Hautojärvi P. Appl. Catal. B:Environ., 1995,5(3):221-231

    10. [10]

      [10] CAI Li(蔡黎), CHEN Shan-Hu(陈山虎), ZHAO Ming(赵明), et al. Chinese J. Inorg. Chem.(无机化学学报), 2009,25(3): 474-479

    11. [11]

      [11] Iwamoto M, Zengyo T, Hernandez A M, et al. Appl.Catal. B: Environ., 1998,17(3):259-266

    12. [12]

      [12] Kolli T, Lassi U, Rahkamaa-Tolonen K, et al. Appl. Catal. A: Gen., 2006,298:65-72

    13. [13]

      [13] HE Sheng-Nan(何胜楠), CUI Ya-Juan(崔亚娟), YAO Yan-Ling(姚艳玲), et al. Acta Phys.-Chim. Sin.(物理化学学报), 2011,27(5):1157-1162

    14. [14]

      [14] Wilcox L, Burnside G, Kiranga B, et al. Chem. Mater., 2003, 15(1):51-56

    15. [15]

      [15] Kašpar J, Fornasiero P, Hickey N. Catal. Today, 2003,77(4): 419-449

    16. [16]

      [16] Kašpar J, Fornasiero P, Graziani M. Catal. Today, 1999,50 (2):285-298

    17. [17]

      [17] Morikawa A, Suzuki T, Kanazawa T, et al. Appl. Catal. B: Environ., 2008,78(3/4)210-221

    18. [18]

      [18] CUI Ya-Juan(崔亚娟), HE Sheng-Nan(何胜楠), FANG Rui-Mei(方瑞梅), et al. Chinese. J. Catal.(催化学报), 2013,33 (6):1020-1026

    19. [19]

      [19] WANG Xing-Yi(王幸宜), LU Guan-Zhong(卢冠忠), JIN Liu-Wei(金柳伟). J. Chinese Rare Earth Soc.(中国稀土学 报), 1995,13(2):128-131

    20. [20]

      [20] Papavasiliou A, Tsetsekou A, Matsouka V, et al. Appl. Catal. B: Environ., 2009,90(1/2):162-174

    21. [21]

      [21] Li C L, Gu X, Wang Y Q, et al. J. Rare Earth, 2009,27(2): 211-215

    22. [22]

      [22] López Granados M, Gurbani A, Mariscal R, et al. J. Catal., 2008,256(2):172-182

    23. [23]

      [23] Leofanti G, Padovan M, Tozzola G, et al. Catal. Today, 1998, 41(1/2/3):207-219

    24. [24]

      [24] Wang Q Y, Zhao B, Li G F, et al. Environ. Sci. Technol, 2010,44(10):3870-3875

    25. [25]

      [25] Jen H W, Graham G W, Chun W, et al. Catal. Today, 1999, 50(2):309-328

    26. [26]

      [26] TANG Shi-Yun(唐石云), JIAO Yi(焦毅), LI Xiao-Shuang (李小双), et al. Chinese J. Inorg. Chem.(无机化学学报), 2012,28(5):965-970

    27. [27]

      [27] Rumruangwong M, Wongkasemjit S. Appl. Organomet. Chem., 2006,20(10):615-625

    28. [28]

      [28] Mejía-Centeno I, Castillo S, Fuentes G A. Appl. Catal. B:Environ., 2012,119-120:234-240

    29. [29]

      [29] Guo Y, Lu G Z, Zhang Z G, et al. Catal. Today, 2007,126(3/4):296-302

    30. [30]

      [30] Sun K P, Lu W W, Wang M, et al. Appl. Catal. A:Gen., 2004,268(1/2):107-113

    31. [31]

      [31] Barrera A, Viniegra M, Fuentes S, et al. Appl. Catal. B: Environ., 2005,56(4),279-288

    32. [32]

      [32] Luo M F, Zheng X M. Appl. Catal. A:Gen., 1999,189(1):15-21

    33. [33]

      [33] Costa C N, Christou S Y, Georgiou G, et al. J. Catal., 2003, 219(2):259-272

    34. [34]

      [34] Lambrou P S, Efatathiou A M. J. Catal., 2006,240(2): 182-193

    35. [35]

      [35] Li G F, Wang Q Y, Zhao B, et al. Appl. Catal. B:Environ., 2011,105(1/2):151-162

    36. [36]

      [36] Nelson A E, Schulz K H. Appl. Surf. Sci., 2003,210(3/4): 206-221

    37. [37]

      [37] Zhao B, Li G F, Ge C H, et al. Appl. Catal. B:Environ., 2010,96(3/4):338-349

    38. [38]

      [38] Bozo C, Guilhaume N, Herrmann J M. J. Catal., 2001,203 (2):393-406

    39. [39]

      [39] Polona V, Fornasiero P, Kašpar J, et al. J. Catal., 1997, 171(1):160-168

    40. [40]

      [40] Winkler A, Dimopoulos P, Hauert R, et al. Appl. Catal. B: Environ., 2008,84(1/2):162-169

    41. [41]

      [41] Weng X L, Zhang J Y, Wu Z B, et al. Appl. Catal. B: Environ., 2011,103(3/4):453-461

    42. [42]

      [42] Liu Y Y, Hayakawa T, Ishii T, et al. Appl. Catal. A:Gen., 2001,210(1/2):301-314

    43. [43]

      [43] Hu Z, Wan C Z, Lui Y K, et al. Catal. Today, 1996,30(1/2/3):83-89

    44. [44]

      [44] He H, Dai H X, Au C T. Catal. Today, 2004,90(3/4):245-254

    45. [45]

      [45] Wang X Y, Kang Q, Li D. Appl. Catal. B:Environ., 2009, 86(3/4):166-175

    46. [46]

      [46] Bourane A, Derrouiche S, Bianchi D. J. Catal., 2004,228 (2):288-297

    47. [47]

      [47] YANG Chun-Yan(杨春雁), YANG Wei-Ya(杨卫亚), LING Feng-Xiang(凌凤香), et al. Chem. Ind. Eng. Prog.(化工进 展), 2010,29(8):1468-1473

    48. [48]

      [48] Sekizawa K, Widjaja H, Maeda S, et al. Appl. Catal. A: Gen., 2000,200(1/2):211-217

    49. [49]

      [49] SHANG Hong-Yan(尚鸿燕), WAGN Yun(王云), GONG Mao-Chu(龚茂初), et al. J. Energ. Chem.(能源化学:英文 版), 2012,21(4):393-399

  • 加载中
    1. [1]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    2. [2]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    3. [3]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    4. [4]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    5. [5]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    6. [6]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    7. [7]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    8. [8]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    9. [9]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    10. [10]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    11. [11]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    12. [12]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    13. [13]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    14. [14]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    15. [15]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    16. [16]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    17. [17]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    18. [18]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    19. [19]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    20. [20]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

Metrics
  • PDF Downloads(0)
  • Abstract views(326)
  • HTML views(40)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return