Citation: ZHANG Yue, ZHAO Xue-Jiao, DUAN Yuan-Shou, SU Xiu-Rong. Ag2O Doped Bi2MoO6: Preparation and Photocatalytic Activity for Fulvic Acid Degradation[J]. Chinese Journal of Inorganic Chemistry, ;2015, (5): 939-946. doi: 10.11862/CJIC.2015.108 shu

Ag2O Doped Bi2MoO6: Preparation and Photocatalytic Activity for Fulvic Acid Degradation

  • Corresponding author: SU Xiu-Rong, 
  • Received Date: 5 December 2014
    Available Online: 15 February 2015

    Fund Project: 国家自然科学基金(No.U1362202) (No.U1362202)山东省自然科学基金(No.ZR2011BQ014) (No.ZR2011BQ014)中央高校基本科研业务费专项资金(No.12CX04093A)资助项目。 (No.12CX04093A)

  • We use ammonium molybdate, bismuth nitrate and silver nitrate as raw materials, hexadecyl trimethyl ammonium bromide(CTAB) as auxiliary surfactant to synthesize photocatalyst Ag2O-Bi2MoO6 via hydrothermal method. The photocatalyst was characterized by XRD, SEM and UV-Vis spectroscopy. The photocatalytic oxidation of fulvic acid in water was performed over the catalyst. The results show that the surface of pure bismuth molybdate is smooth while on the surface of Ag2O-Bi2MoO6 there are some well-distributed small grains. The XRD pattern of Ag2O-Bi2MoO6 shows diffraction peaks of Ag2O. Compared with the pure sample, Ag2O-Bi2MoO6 has much higher photocatalytic activity under visible light, and when its doping level is 1.5%, it shows the highest activity. The best catalyst concentration is 0.6 g·L-1. The decrease in pH value of the solvent and initial concentration of fulvic acid will promote the removal of fulvic acid. The degradation process of fulvic acid conforms the first order kinetics, and the fitting equation is y=-0.0195x. A Photobacterium phosphoreum toxicity test results show that the toxicity of the 2 h photocatalytic degradation product is reduced by about 90% compared to the un-degraded fulvic acid.
  • 加载中
    1. [1]

      [1] WANG Zhan-Sheng(王占生), LIU Wen-Jun(刘文君). Treat-ment for Micro-Polluted Water(微污染水源饮用水处理). Beijing: China Architecture & Building Press, 1999.

    2. [2]

      [2] Casey T J, Chua K H. J. Water SRT-Aqua, 1997,46(1):31-32

    3. [3]

      [3] An Ding-Nian(安鼎年). Technol. Water Treat.(水处理技术), 1982(1):7-11

    4. [4]

      [4] Fujishima A, Honda K. Nature, 1972,238(5358):37-38

    5. [5]

      [5] Carey J H, Lawrence J, Tosine H M, et al. Bull. Environ. Contam. Toxicol., 1976,16(6):697-701

    6. [6]

      [6] YAO Yong(姚勇), LIU Chang-Wei(刘昌伟), CHEN Gao-Feng(陈高峰), et al. Sciencepaper Online(中国科技论文在 线), 2011,6(12):941-945

    7. [7]

      [7] Yu J Q, Kudo A. Chem. Lett., 2005,34(11):1528-1529

    8. [8]

      [8] Bi J, Wu L, Zhang Y, et al. Appl. Catal B: Environ., 2009, 91(1/2):135-143

    9. [9]

      [9] Choi W, Termin A, Hoffmann M R. J. Phys. Chem., 1994,98 (51):13669-13679

    10. [10]

      [10] Shen M, Zhang Q, Chen H, et al. CrystEngComm, 2011,13 (7):2785-2791

    11. [11]

      [11] Water Quality-Determination of the Acute Toxicity-Lumines-cent Bacteria Test(水质急性毒性的测定-发光细菌法)(GB/T 15441-1995)

    12. [12]

      [12] 水质化学需氧量的测定-快速消解分光光度法(Water Quality-Determination of the Chemical Oxygen Demand-Fast Digestion-Spectrophotometric Method)(HJ/T 399-2007)

    13. [13]

      [13] Tamimi M, Qourzal S, Assabbane A, et al. Photochem. Photobiol. Sci., 2006,5(5):477-482

    14. [14]

      [14] FU Jian-Feng(傅剑锋), JI Min(季民), JIN Luo-Nan(金洛楠), et al. J. Chem. Ind. Eng.(化工学报), 2005,56(6):1010-1014

    15. [15]

      [15] Rengaraj S, Li X, Tanner P, et al. J. Mol. Catal. A: Chem., 2006,247(1/2):36-43

    16. [16]

      [16] Mehrab M, William A A, Murray M Y, et al. Chem. Eng. Sci., 2000,55(21):4885-4891

    17. [17]

      [17] Litter M. Appl. Catal. B: Environ., 1999,23(2/3):89-114

    18. [18]

      [18] Fujishima A, Rao T N, Tryk D A. J. Photochem. Photobiol. C: Photochem. Rev., 2000,1(1):1-21

    19. [19]

      [19] Chen Y, Yang S, Wang K, et al. J. Photochem. Photobiol. A: Chem., 2005,172(1):47-54

  • 加载中
    1. [1]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    2. [2]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    3. [3]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    4. [4]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    5. [5]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    6. [6]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    7. [7]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    8. [8]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    9. [9]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    10. [10]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    11. [11]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    12. [12]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    13. [13]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    14. [14]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    15. [15]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    16. [16]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    17. [17]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    18. [18]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    19. [19]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    20. [20]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

Metrics
  • PDF Downloads(0)
  • Abstract views(321)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return