Citation: ZHENG Zhen-Miao, TANG Xin-Cun, WANG Yang, JIN Yuan, MENG Jia, LIU Wen-Ming, WANG Tao. Solvothermal Synthesis and Electrochemical Performance of Flowerlike LiFePO4 Hierarchically Microstructures[J]. Chinese Journal of Inorganic Chemistry, ;2015, (4): 731-738. doi: 10.11862/CJIC.2015.106 shu

Solvothermal Synthesis and Electrochemical Performance of Flowerlike LiFePO4 Hierarchically Microstructures

  • Corresponding author: TANG Xin-Cun, 
  • Received Date: 22 October 2014
    Available Online: 24 December 2014

    Fund Project: 国家自然科学基金(No.21276286) 资助项目。 (No.21276286)

  • The cathode material LiFePO4 with high tap density of 1.3 g·cm-3 was synthesized via a solvothermal technique, using ammonium tartrate as additive and carbon source, and ethylene glycol/water as solvent. The as-prepared samples were characterized by X-ray diffraction, Fourier-transform infrared spectroscopy, scanning and transmission electron microscopies. The results show that the as-prepared samples were flowerlike LiFePO4 which consists of single-crystalline nanoplates with an open porous hierarchical structure. A reasonable formation mechanism is proposed based on time dependent experiments. The main evolving process involves the following steps: nucleation, growth and oriented assembling. The electrochemical properties of the LiFePO4 cathode is found to exhibit excellent rate capability (i.e., discharge capacity of 74.8 mAh·g-1 at 10C) and cycling performance (i.e., > 93% of capacity retention rate after 50 cycles).
  • 加载中
    1. [1]

      [1] Scrosati B. Electrochim. Acta, 2000,45(15):2461-2466

    2. [2]

      [2] Padhi A K, Nanjundaswamy K S, Goodenough J B. J. Electrochem. Soc., 1997,144(4):1188-1194

    3. [3]

      [3] Churikov A V, Ivanishchev A V, Ivanishcheva I A, et al. Electrochim. Acta, 2010,55(8):2939-2950

    4. [4]

      [4] Morgan D, Van der Ven A, Ceder G. Electrochem. Solid-State Lett., 2004,7(2):A30-A32

    5. [5]

      [5] Delacourt C, Poizot P, Levasseur S, et al. Electrochem. Solid-State Lett., 2006,9(7):A352-A355

    6. [6]

      [6] Sun C S, Zhou Z, Xu Z G, et al. J. Power Sources, 2009,193(2):841-845

    7. [7]

      [7] Sun C S, Zhang Y, Zhang X J, et al. J. Power Sources, 2010, 195(11):3680-3683

    8. [8]

      [8] Wang Y G, He P, Zhou H S. Energy Environ. Sci., 2011,4(3):805-817

    9. [9]

      [9] Wang J J, Sun X L. Energy Environ. Sci., 2012,5(1):5163-5185

    10. [10]

      [10] Saravanan K, Balaya P, Reddy M V, et al. Energy Environ. Sci., 2010,3(4):457-463

    11. [11]

      [11] Nan C Y, Lu J, Chen C, et al. J. Mater. Chem., 2011, 21, 9994-9996

    12. [12]

      [12] Wang L, He X M, Sun W T, et al. Nano Lett., 2012,12(11): 5632-5636

    13. [13]

      [13] Dominko R, Bele M, Goupil J M, et al. Chem. Mater., 2007, 19(12):2960-2969

    14. [14]

      [14] Doherty C M, Caruso R A, Smarsly B M, et al. Chem. Mater., 2009,21(13):2895-2903

    15. [15]

      [15] Wang M, Yang Y, Zhang Y X. Nanoscale, 2011,3(10):4434-4439

    16. [16]

      [16] Sun C W, Rajasekhara S, Dong Y Z, et al. J. Am. Chem. Soc., 2011,133(7):2132-2135

    17. [17]

      [17] Franger S, Le Cras F, Bourbon C, et al. Electrochem. Solid-State Lett., 2002,5(10):A231-A233

    18. [18]

      [18] HAN En-Shan(韩恩山), FENG Zhi-Hui(冯智辉), WEI Zi-Hai(魏子海), et al. Inorg. Chem. Ind.(无机盐工业), 2008, 40(1):22-25

    19. [19]

      [19] TANG Hong(唐红), GUO Xiao-Dong(郭孝东), TANG Yan (唐艳), et al. Chinese J. Inorg. Chem. (无机化学学报), 2012,28(4):809-814

    20. [20]

      [20] ZHANG Hai-Feng(张海峰), LIU Kai-Yu(刘开宇), SUN Zhe (孙哲), et al. Chinese Battery Ind.(电池工业), 2012,17(2): 85-88

    21. [21]

      [21] Hu Y Q, Doeff M M, Kostecki R, et al. J. Electrochem. Soc., 2004,151(8):A1279-A1285

    22. [22]

      [22] Lim J, Gim J, Kang S W, et al. J. Electrochem. Soc., 2012, 159(4):A479-A484

    23. [23]

      [23] Yang H, Wu X L, Cao M H, et al. J. Phys. Chem. C, 2009, 113(8):3345-3351

    24. [24]

      [24] Saravanan K, Reddy M V, Balaya P, et al. J. Mater. Chem., 2009,19(5):605-610

    25. [25]

      [25] Li L X, Tang X C, Liu H T, et al. Electrochim. Acta, 2010, 56(2):995-999

    26. [26]

      [26] Doeff M M, Wilcox J D, Kostecki R, et al. J. Power Sources, 2006,163(1):180-184

    27. [27]

      [27] Wang Y G, Wang Y R, Hosono E, et al. Angew. Chem., 2008, 120(39):7571-7575

    28. [28]

      [28] Kang W P, Zhao C H, Liu R, et al. CrystEngComm, 2012, 14(6):2245-2250

    29. [29]

      [29] Qin X, Wang J M, Xie J, et al. Phys. Chem. Chem. Phys, 2012,14(8):2669-2677

    30. [30]

      [30] HANG Fu-Qin(黄富勤), TANG Xin-Cun(唐新村), XIAO Yuan-Hua(肖元化), et al. Chinese J. Inorg. Chem.(无机化学学报), 2014,30(2):235-241

    31. [31]

      [31] CHANG Ling(常玲), WANG Feng-Xian(王凤先), DU Gao-Hui(杜高辉), et al. Chinese J. Power Sources(电源技术), 2013,37(10):1733-1735

    32. [32]

      [32] Zhou N, Uchaker E, Wang H Y, et al. RSC Adv., 2013,3(42):19366-19374

    33. [33]

      [33] Yang S L, Hu M J, Xi L J, et al. ACS Appl. Mater. Interfaces, 2013,5(18):8961-8967

  • 加载中
    1. [1]

      Jianbao MeiBei LiShu ZhangDongdong XiaoPu HuGeng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5−xMn0.5V1.5−xZrx (PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-0. doi: 10.3866/PKU.WHXB202407023

    2. [2]

      Huayan LiuYifei ChenMengzhao YangJiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-0. doi: 10.1016/j.actphy.2025.100063

    3. [3]

      Xue ZhangZihan HeYingqi WuWeilai YuTao Liu . Corn-distillers-derived hard carbon: a sustainable high-rate, long-life anode for sodium-ion batteries. Acta Physico-Chimica Sinica, 2026, 42(5): 100199-0. doi: 10.1016/j.actphy.2025.100199

    4. [4]

      Jie WUZhihong LUOXiaoli CHENFangfang XIONGLi CHENBiao ZHANGBin SHIQuansheng OUYANGJiaojing SHAO . Critical roles of AlPO4 coating in enhancing cycling stability and rate capability of high voltage LiNi0.5Mn1.5O4 cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 948-958. doi: 10.11862/CJIC.20240400

    5. [5]

      Rui YangHui LiQingfei MengWenjie LiJiliang WuYongjin FangChi HuangYuliang Cao . Influence of PC-based Electrolyte on High-Rate Performance in Li/CrOx Primary Battery. Acta Physico-Chimica Sinica, 2024, 40(9): 2308053-0. doi: 10.3866/PKU.WHXB202308053

    6. [6]

      Hui ZhangZijian ZhaoYajing WangKai NiYanfei WangLiang ZhuJianyun LiuXiaoyu Zhao . Structurally engineered solvent-free LiFePO4 electrodes via hot-pressing with efficient ion transport pathways for lithium extraction from brine. Acta Physico-Chimica Sinica, 2026, 42(2): 100130-0. doi: 10.1016/j.actphy.2025.100130

    7. [7]

      Tong WANGQinyue ZHONGQiong HUANGWeimin GUOXinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011

    8. [8]

      Wendi DouGuangying WanTiefeng LiuLin HanWu ZhangChuang SunRensheng SongJianhui ZhengYujing LiuXinyong Tao . Conductive composite binder for recyclable LiFePO4 cathode. Chinese Chemical Letters, 2024, 35(11): 109389-. doi: 10.1016/j.cclet.2023.109389

    9. [9]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    10. [10]

      Hao SunXiaoxue LiBaoyu WuKai ZhuYinyi GaoTianzeng BaoHongbin WuDianxue Cao . Direct regeneration of spent LiFePO4 cathode material via a simple solid-phase method. Chinese Chemical Letters, 2025, 36(6): 110041-. doi: 10.1016/j.cclet.2024.110041

    11. [11]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    12. [12]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    13. [13]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    14. [14]

      Chunhui GaoLurong LiGuanwei PengJinni ShenWenxin DaiZizhong Zhang . Efficient photocatalytic NADH regeneration and enzymatic CO2 reduction over[Cp*Rh(bpy)H2O]2+ self-assembled CdIn2S4 flower-like microspheres. Acta Physico-Chimica Sinica, 2026, 42(3): 100165-0. doi: 10.1016/j.actphy.2025.100165

    15. [15]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

    16. [16]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    17. [17]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    18. [18]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    19. [19]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    20. [20]

      Fan YangZheng LiuDa WangKwunNam HuiYelong ZhangZhangquan Peng . Preparation and Properties of P-Bi2Te3/MXene Superstructure-based Anode for Potassium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2303006-0. doi: 10.3866/PKU.WHXB202303006

Metrics
  • PDF Downloads(0)
  • Abstract views(778)
  • HTML views(76)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return