Citation: LIU Li-Hu, CHEN Shu-Lin, LIU Fan, XIANG Quan-Jun, FENG Xiong-Han, QIU Guo-Hong. Hydrothermal Preparation and Carbon Nanotube Modification of o-LiMnO2 Cathode Materials for Lithium Battery[J]. Chinese Journal of Inorganic Chemistry, ;2015, (4): 703-709. doi: 10.11862/CJIC.2015.100 shu

Hydrothermal Preparation and Carbon Nanotube Modification of o-LiMnO2 Cathode Materials for Lithium Battery

  • Corresponding author: QIU Guo-Hong, 
  • Received Date: 30 September 2014
    Available Online: 29 December 2014

    Fund Project: 国家自然科学基金(Nos.41171375、20807019) (Nos.41171375、20807019)教育部新世纪优秀人才支持计划(No.NCET-12-0862) (No.NCET-12-0862)霍英东教育基金会高等院校青年教师基金(No.141024) (No.141024)湖北省杰出青年人才基金(No. 2012FFA031) (No. 2012FFA031)中央高校基本科研业务费专项资金(Nos. 2013PY029、 2011PY030)。 (Nos. 2013PY029、 2011PY030)

  • Rechargeable lithium battery cathode materials orthorhombic LiMnO2(o-LiMnO2) was directly synthesized using hydrothermal reaction of MnCl2, LiOH, EDTA and NaClO solutions, and carbon nanotube modified o-LiMnO2(o-LiMnO2/CNTs composite) was further obtained by adding CNTs into the reaction system. The as-prepared samples were characterized by X-ray diffractometer and SEM/TEM, and their electrochemical performance was tested using constant current charge/discharge experiment and cyclic voltammetry. o-LiMnO2 was formed when hydrothermal reaction was performed at 180℃ for 24 h with LiOH/MnCl2 molar ratio as low as 8:1. o-LiMnO2 exhibited the initial discharge capacity of 76.0 mAh·g-1, and cycling capacity of 124.1 mAh·g-1 after 100 cycles. The formation of o-LiMnO2/CNTs composite decreased the particle size and electrochemical resistivity of single o-LiMnO2. The initial discharge capacity was 94.1 mAh·g-1, and increased and then kept stable after 45 cycles, and the cycling capacity was 159.8 mAh·g-1 after 100 cycles. This work facilitates the preparation and electrochemical performance improvement of o-LiMnO2 cathode materials for rechargeable lithium batteries.
  • 加载中
    1. [1]

      [1] Armand M, Tarascon J M. Nature, 2008,451(7179):652-657

    2. [2]

      [2] Liu C, Nan J M, Zuo X X, et al. Int. J. Electrochem. Sci., 2012,7(8):7152-7164

    3. [3]

      [3] FAN Guang-Xin(范广新), ZENG Yue-Wu(曾跃武), CHEN Rong-Sheng(陈荣升), et al. Chinese J. Inorg. Chem.(无机化学学报), 2007,23(6):963-968

    4. [4]

      [4] LI Yi-Bing(李义兵), CHEN Bai-Zhen(陈白珍), HU Yong-Jun(胡拥军), et al. Chinese J. Inorg. Chem.(无机化学学报), 2006,22(6):983-987

    5. [5]

      [5] SU Zhi(粟智), YE Shi-Hai(叶世海), WANG Yong-Long (王永龙). Chemistry(化学通报), 2009,72(11):993-997

    6. [6]

      [6] Guo Z P, Konstantinv K, Wang G X, et al. J. Power Sources, 2003,119-121(1/2):221-225

    7. [7]

      [7] Bruce P G, Armstrong A R, Gitzendanner P L. J. Mater. Chem., 1999,9(1):193-198

    8. [8]

      [8] Xiao X L, Wang L, Wang D S, et al. Nano Res., 2009,2(12): 923-930

    9. [9]

      [9] Ji H M, Yang G, Miao X W, et al. Electrochim. Acta, 2010,55(9):3392-3397

    10. [10]

      [10] JIA Chun-Hui(家春晖), LU Dao-Rong(鲁道荣), HU De-Peng(胡德鹏). Metallic Funct. Mater.(金属功能材料), 2012, 19(2):26-30

    11. [11]

      [11] Xie J L, Huang X, Zhu Z B, et al. Ceram. Int., 2011,37(1): 419-421

    12. [12]

      [12] He Y, Feng Q, Zhang S Q, et al. ACS Sustainable Chem. Eng., 2013,1(6):570-573

    13. [13]

      [13] Huang X K, Zhang Q S, Chang H T, et al. J. Electrochem. Soc., 2009,156(3):A162-A168

    14. [14]

      [14] Qiu G H, Gao Z Y, Yin H, et al. Solid State Sci., 2010,12(5):808-813

    15. [15]

      [15] Yin H, Liu F, Chen X H, et al. Microporous Mesoporous Mater., 2012,153:115-123

    16. [16]

      [16] Qiu G H, Huang H, Dharmarathna S, et al. Chem. Mater., 2011,23(17):3892-3901

    17. [17]

      [17] Chen S L, Cao F F, Liu F, et al. RSC Adv., 2014,4(26): 13693-13703

    18. [18]

      [18] Stobinski L, Lesiak B, Kover L, et al. J. Alloys Compd., 2010,501(1):77-84

    19. [19]

      [19] Riley L A, Atta S V, Cavanagh A S, et al. J. Power Sources, 2011,196(6):3317-3324

    20. [20]

      [20] Chitra S, Kalyani P, Mohan T, et al. J. Electroceram., 1999,3(4):433-441

    21. [21]

      [21] Croguennec L, Deniard P, Brec R, et al. J. Mater. Chem., 1995,5(11):1919-1925

    22. [22]

      [22] WANG Lu(王禄), MA Wei(马伟), HAN Mei(韩梅), et al. Acta Chim. Sinica(化学学报), 2007,65(12):1135-1139

    23. [23]

      [23] Yi J, Huang B Y, Wang H F, et al. J. Electrochem. Soc., 1999,146:3217-3223

    24. [24]

      [24] FAN Guang-Xi(范广新), ZENG Yue-Wu(曾跃武), CHEN Rong-Sheng(陈荣升), et al. Chinese J. Inorg. Chem.(无机化学学报), 2008,24(6):944-949

    25. [25]

      [25] Ji H M, Yang G, Miao X W, et al. Electrochim. Acta, 2010, 55:3392-3397

    26. [26]

      [26] Nagasubramanian A, Yu D Y W, Hoster H, et al. J. Solid State Electrochem., 2014,18:1915-1922

    27. [27]

      [27] Cook J B, Kim C J, Xu L P, et al. J. Electrochem. Soc., 2013,160(1):A46-A52

    28. [28]

      [28] Wu C, Wang Z X, Wu F, et al. Solid State Ionics, 2001, 144(3/4):277-285

    29. [29]

      [29] CHEN Shang(陈上), WU Xian-Ming(吴显明), LIU Jian-Ben (刘建本), et al. J. Funct. Mater.(功能材料), 2009,12(40): 1964-1966

  • 加载中
    1. [1]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    2. [2]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    3. [3]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    4. [4]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    5. [5]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    6. [6]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    7. [7]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    8. [8]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    9. [9]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    10. [10]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    11. [11]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    12. [12]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    13. [13]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    14. [14]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    15. [15]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    16. [16]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    17. [17]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    18. [18]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    19. [19]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    20. [20]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

Metrics
  • PDF Downloads(0)
  • Abstract views(324)
  • HTML views(60)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return