Citation: JIN Lei, FU Hong-Gang, XIE Ying, YU Hai-Tao. Impact of Cs Coverage on the Structural Stability and Field Emission Performance of Cs/Graphene Compound[J]. Chinese Journal of Inorganic Chemistry, ;2015, (3): 446-451. doi: 10.11862/CJIC.2015.092 shu

Impact of Cs Coverage on the Structural Stability and Field Emission Performance of Cs/Graphene Compound

  • Corresponding author: FU Hong-Gang, 
  • Received Date: 17 October 2014
    Available Online: 30 November 2014

    Fund Project: 国家重点基础研究项目(No.2013CB934104) (No.2013CB934104) 国家自然科学基金重点项目(No.20131001, 20210004) (No.20131001, 20210004) 国家自然科学基金项目 (No.91122018, 21371053, 21376065) (No.91122018, 21371053, 21376065) 教育部科技创新重大项目培育资金(No.708029)资助项目。 (No.708029)

  • Relying on the density functional theory(DFT), the structural stability and field emission performance of Cs/graphene compound with different Cs coverage were investigated. The results indicated that the adsorption of single Cs atom on the center site of hexatomic ring is energetically favorable. With the increase of Cs coverage, the adsorption interaction between Cs and graphene are gradually enhanced, (4×4)R 0° and (2×2)R 0° structures are stable. Due to the modification effect of Cs metals, the work function of Cs/graphene system decreases obviously, and it is continuously reduced with increasing of Cs coverage. The computational results of the density of states (DOSs) identified that the reduction of the work function is mainly related to the electron transfer between Cs and graphene. With increasing of Cs coverage, the electronic states will shift to a lower energy position, leading to the increase of Fermi energy and the reduction of work function.
  • 加载中
    1. [1]

      [1] Ribaya B P, Leung J, Brown P. Nanotechnology, 2008,19(18): 185201(1-8)

    2. [2]

      [2] LI Ling(李玲), LIN Kui(林奎), ZHANG Fan(张帆), et al. Chinese J. Inorg. Chem.(无机化学学报), 2014,30(5):1097-1103

    3. [3]

      [3] Jung M S, Ko Y K, Jung D H. Appl. Phys. Lett., 2005,87: 013114(1-3)

    4. [4]

      [4] Lim S C, Choi H K, Jeong H J, et al. Carbon, 2006,44(13): 2809-2815

    5. [5]

      [5] Dean K A, Burgin T P, Chalamala B R. Appl. Phys. Lett., 2001,79(12):1873-1875

    6. [6]

      [6] Bonard J M, Kind H, Stckli T. Solid-State Electron., 2001,45 (6):893-914

    7. [7]

      [7] Wu Z S, Pei S F, Ren W C, et al. Adv. Mater., 2009,21(17): 1756-1760

    8. [8]

      [8] Yu Y J, Zhao Y, Ryu S, et al. Nano Lett., 2009,9(10):3430-3434

    9. [9]

      [9] Han S, Ihm J. Phys. Rev. B, 2002,66:241402(1-4)

    10. [10]

      [10] Qiao L, Qu C Q, Zhang H Z, et al. Diamond Relat. Mater., 2010,19(11):1377-1381

    11. [11]

      [11] YANG Yong-Hui(杨勇辉), SUN Hong-Juan(孙红娟), PENG Tong-Jiang(彭同江). Chinese J. Inorg. Chem.(无机化学学 报), 2010,26(11):2083-2090

    12. [12]

      [12] Chen G H, Li Z B, Peng J, et al. J. Phys. Chem. C, 2007, 111(13):4939-4945

    13. [13]

      [13] Wadhawan A, StallcupII R E, Perez J M. Appl. Phys. Lett., 2001,78(1):108(1-3)

    14. [14]

      [14] Jeong T W, Heo J N, Lee J H, et al. Appl. Phys. Lett., 2005, 87:063112(1-3)

    15. [15]

      [15] Perdew J P, Wang Y. Phys. Rev. B, 1992,45:13244-13249

    16. [16]

      [16] Yang X B, Ni J. Phys. Rev. B, 2004,69:125419(1-4)

    17. [17]

      [17] White J D, Cui J, Strauss M, et al. Surf. Sci., 1994,307-309: 1134-1140

    18. [18]

      [18] Xie Y, Yu H T, Zhang H X, et al. Phys. Chem. Chem. Phys., 2012,14:4391-4397

  • 加载中
    1. [1]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    2. [2]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    3. [3]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    4. [4]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    5. [5]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    6. [6]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    7. [7]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    8. [8]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    9. [9]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    10. [10]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    11. [11]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

Metrics
  • PDF Downloads(0)
  • Abstract views(166)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return