Citation: GU Xiao-Min, WANG Lei, SHAN Yue-Xia, ZHANG Wen-Li, CHEN Qin, NI Liang, YAO Jia. Frameworks of Metal Dicarboxylate Complexes: from Nuclear Structures to Double Chains Based on N-containing Ligands[J]. Chinese Journal of Inorganic Chemistry, ;2015, (3): 555-564. doi: 10.11862/CJIC.2015.091 shu

Frameworks of Metal Dicarboxylate Complexes: from Nuclear Structures to Double Chains Based on N-containing Ligands

  • Corresponding author: ZHANG Wen-Li, 
  • Received Date: 1 September 2014
    Available Online: 6 January 2015

    Fund Project: 江苏大学高级人才启动基金项目(No.14JDG053) (No.14JDG053)江苏省博士后科学基金(No.1401176C)资助项目。 (No.1401176C)

  • Three complexes have been obtained by the reaction of metal (Mn(Ⅱ), Cd(Ⅱ)), 5,6-substituted 1,10-phen derivatives with two carboxylic acids, 4,4'-oxybis(benzoic acid)(4,4'-H2oba) and oxalic acid (H2ox). The crystal structures of the resulting complexes, namely {[Mn(4,4'-oba)(Medpq)]Medpq}n (1), [Mn2(4,4'-oba)2(MOPIP)4]·2H2O (2), and [Cd(ox)(MOPIP)2]·2H2O (3) (Medpq=2-methyldipyrido-[3,2-f:2,3'-h]quinoxaline, MOPIP=2-(4-methoxyphenyl)-1H-imidazo[4,5-f][1,10]phenanthroline]), have been elucidated using their single-crystal X-ray diffraction analysis. Diverse structures are observed for these complexes. Compound 1 contains double chains, which are further stacked via hydrogen bonding interactions to form layers. Compound 2 features dinuclear structures, which are connected by strong ππ and hydrogen bonding interactions to result in layer structures. Compound 3 contains mononuclear structures and extended to chain and layer structures by ππ and hydrogen bonding interactions. The differences among these structures indicate that the size of the rigid chelating ligands and the flexibility of carboxylate have important effects on the structures of their complexes. The fluorescent properties of 2 and 3 were studied in the solid state at room temperature.
  • 加载中
    1. [1]

      [1] Ohrstrom L, Larsson K. Dalton. Trans., 2004,3:347-353

    2. [2]

      [2] Yadav P K, Kumari N, Pachfule P, et al. Cryst. Growth Des., 2012,12:5311-5319

    3. [3]

      [3] Sun C Y, Gao S, Jin L P. Eur. J. Inorg. Chem., 2006,12: 2411-2421

    4. [4]

      [4] Rosi N L, Eckert J, Eddaoudi M, et al. Science, 2003,300: 1127 -1130

    5. [5]

      [5] Wang X L, Qin C, Wang E B. Cryst. Growth Des., 2006,6: 439-443

    6. [6]

      [6] Pasan J, Sanchiz J, Lloret F, et al. Cryst. Eng. Comm., 2007, 9:478-487

    7. [7]

      [7] Ma L F, Wang Y Y, Wang L Y, et al. Eur. J. Inorg. Chem., 2008,5:693-703

    8. [8]

      [8] Zhang W H, Wang Y Y, Lermontova E K, et al. Cryst. Growth Des., 2010,10:76-84

    9. [9]

      [9] Wang C J, Yue K F, Tu Z X, et al. Cryst. Growth Des., 2011, 11:2897-2904

    10. [10]

      [10] Furukawa H, Kim J, Ockwig N W, et al. J. Am. Chem. Soc., 2008,130:11650-11661

    11. [11]

      [11] Li M X, Miao Z X, Shao M, et al. Inorg. Chem., 2008,47: 4481-4489

    12. [12]

      [12] Yang J, Ma J F, Liu Y Y, et al. Inorg. Chem., 2007,46:6542 -6555

    13. [13]

      [13] Wang X L, Chen Y Q, Gao Q, et al. Cryst. Growth Des., 2010,10:2174-2184

    14. [14]

      [14] Wang L, Ni L. J. Coord. Chem., 2012,65:1475-1483

    15. [15]

      [15] Wang L, Ni L, Yao J. Polyhedron, 2013,59:115-123

    16. [16]

      [16] HUANG Yan-Ju(黄燕菊), NI Liang(倪良), DU Gang(杜刚), et al. Chinese J. Inorg. Chem.(无机化学学报), 2010,26(7): 1269-1273

    17. [17]

      [17] Shi Z Q, Li Y Z, Guo Z J, et al. Cryst. Growth Des., 2013, 13:3078-3086

    18. [18]

      [18] Mahata P, Draznieks C M, Roy P, et al. Cryst. Growth Des., 2013,13:155-168

    19. [19]

      [19] Xu G H, He X Y, Lü J Y, et al. Cryst. Growth Des., 2012, 12:3619-3630

    20. [20]

      [20] Mahata P, Natarajan S, Panissod P, et al. J. Am. Chem. Soc., 2009,131:10140-10150

    21. [21]

      [21] Manjunatha M N, Dikundwar A G, Nagasundara K R. Polyhedron, 2011,30:1299-1304

    22. [22]

      [22] Tatjana S R, Manja Z, Tamara T, et al. Eur. J. Med. Chem., 2011,46:3734-3747

    23. [23]

      [23] Zampakou M, Rizeq N, Tangoulis V, et al. Inorg. Chem., 2014,53:2040-2052

    24. [24]

      [24] Wang L, Ni L, Zhao J, et al. Z. Anorg. Allg. Chem., 2012, 38:224-230

    25. [25]

      [25] Frisch M J, Trucks G W, Schlegel H B. Gaussian 03 Revision B. 03, Gaussian, Inc., Pittsburgh PA, 2003.

    26. [26]

      [26] Sheldrick G M. SHELXS-97, Program for Solution of Crystal Structures, University of Göttingen, Germany, 1997.

    27. [27]

      [27] Sheldrick G M. SHELXL-97, Program for Refinement of Crystal Structures, University of Göttingen, Germany, 1997.

    28. [28]

      [28] Pennington W T. J. Appl. Cryst., 1999,32:1028-1029

    29. [29]

      [29] Wang X L, Chen Y Q, Gao Q, et al. Cryst. Growth Des., 2010,10:2174-2184

    30. [30]

      [30] Shi X, Zhu G S, Wang X H, et al. Cryst. Growth Des., 2005,5:341-346

    31. [31]

      [31] Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. 4th Ed. New York: Wiley Interscience, 1986.

    32. [32]

      [32] Shan W W, Ma S S, Wang H L, et al. J. Inorg. Organomet. Polym., 2014,24:468-475

    33. [33]

      [33] Wang C C, Wang Z H, Gu F B, et al. J. Mol. Struct., 2011, 1004:39-44

    34. [34]

      [34] Shi X, Zhu G, Fang Q, et al. Eur. J. Inorg. Chem., 2004,1: 185-191

    35. [35]

      [35] Peng X, Cui G H, Li D J, et al. J. Mol. Struct., 2010,967: 54-60

    36. [36]

      [36] LI Zhang-Peng(李章鹏), XING Yong-Heng(邢永恒), ZHANG Yuan-Hong(张元红). Acta Phys.-Chim. Sin.(物理化学学 报), 2009,25(4):741-746

  • 加载中
    1. [1]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    2. [2]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    3. [3]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    4. [4]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    5. [5]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    6. [6]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    7. [7]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    8. [8]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    9. [9]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    10. [10]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    11. [11]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    12. [12]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    13. [13]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    14. [14]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    15. [15]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    16. [16]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    17. [17]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    18. [18]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    19. [19]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    20. [20]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

Metrics
  • PDF Downloads(0)
  • Abstract views(229)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return