Citation: XU De-Kang, LIU Chu-Feng, YAN Jia-Wei, OUYANG Hong-Qun, ZHANG Yue-Li. Synthesis and Optical/Magnetic Properties of Lanthanides Doped Gd2O3 with Different Morphologies[J]. Chinese Journal of Inorganic Chemistry, ;2015, (4): 689-695. doi: 10.11862/CJIC.2015.076 shu

Synthesis and Optical/Magnetic Properties of Lanthanides Doped Gd2O3 with Different Morphologies

  • Corresponding author: ZHANG Yue-Li, 
  • Received Date: 1 September 2014
    Available Online: 11 December 2014

    Fund Project: 国家自然科学基金(No.61172027) (No.61172027)广东省自然科学基金重点(No.1414050000317)资助项目。 (No.1414050000317)

  • Gd2O3 samples (S-CA, S-OA, S-EDTA) with different morphologies are obtained via thermal treatment from the precursors Gd(OH)3, which are hydrothermally prepared using different additives: Citrate acid (CA), Oleic Acid (OA) and Ethylenediaminetetraacetic acid (EDTA). XRD patterns show that the structure of the as-prepared samples are typical cubic phase with Ia3 space group and slight differences in lattice constants: 1.082 25 nm (S-CA), 1.081 14 nm (S-OA), 1.083 20 nm (S-EDTA). SEM images show that the average particle sizes with different additives are 70 nm (S-CA), 300 nm (S-OA), 2 μm (S-EDTA), respectively. IR spectra further prove that all the samples are Gd2O3, and samples derived from different additives are coupled with organic groups which have different vibration absorption intensities. Upconversion(UC) luminescent and magnetic properties of Gd0.78Yb0.20Ln0.02O3(Ln=Er, Ho) were also studied. The results show that morphologies have a great impact on lanthanides doped UC luminescence intensity and paramagnetic susceptibility of Gd2O3 samples. Among them, both UC luminescence intensity and paramagnetic susceptibility of rare-earth doped Gd2O3 powders derived from EDTA reach the optimum values.
  • 加载中
    1. [1]

      [1] Bridot J, Faure A, Laurent S, et al. J. Am. Chem. Soc., 2007, 129:5076-5084

    2. [2]

      [2] Lee B, Lee K S, Lee J H, et al. Dalton Trans., 2009,14:2490-2495

    3. [3]

      [3] Hong M, Kwo J, Kortan A R, et al. Science, 1999,283:1897-1900

    4. [4]

      [4] Leskel M, Kukli K, Ritala M. J. Alloys Compd., 2006,418: 27-34

    5. [5]

      [5] Jia G, Liu K, Zheng Y, et al. J. Phys. Chem. C, 2009,113: 6050-6055

    6. [6]

      [6] Bazzi R, Flores-Gonzalez M A, Louis C, et al. J. Colloid Interface Sci., 2004,273:191-197

    7. [7]

      [7] Bazzi R, Flore-Gonzalez M A, Louis C, et al. J. Lumin., 2003,102-103:445-450

    8. [8]

      [8] FAN Le-Qing(范乐庆), LI Zhao-Lei(李兆磊), HUANG Yun-Fang(黄昀昉), et al. Chinese J. Inorg. Chem.(无机化学学报), 2015,31(1):147-152

    9. [9]

      [9] Louis C, Bazzi R, Flores-Gonzalez M A, et al. J. Solid State Chem., 2003,172:335-341

    10. [10]

      [10] Singh S, Kumar K, Rai S. Mater. Sci. Eng. B, 2010,166: 180-184

    11. [11]

      [11] Singh S, Kumar K, Rai S. Appl. Phys. B, 2009,94:165-173

    12. [12]

      [12] Silver J, Martinez-Rubio M L, Ireland T G, et al. J. Phys. Chem. B, 2001,105:948-953

    13. [13]

      [13] Zeng J, Su J, Li Z, et al. Adv. Mater., 2005,17:2119-2123

    14. [14]

      [14] Yang J, Li C, Cheng Z, et al. J. Phys. Chem. C, 2007,111: 18148-18154

    15. [15]

      [15] Zhou L, Gu Z, Liu X, et al. J. Mater. Chem., 2012,22:966-974

    16. [16]

      [16] Xing G, Guo Q, Liu Q, et al. Ceram. Int., 2014,40:6569-6577

    17. [17]

      [17] Zeng S, Tsang M, Chan C, et al. Biomaterials, 2012,33:9232-9238

    18. [18]

      [18] Guo L, Wang Y, Wang Y, et al. CrystEngComm, 2012,14: 3131-3141

    19. [19]

      [19] Zheng H, Chen B, Yu H, et al. J. Colloid Interface Sci., 2014, 420:27-34

    20. [20]

      [20] Wang L, He D, Feng S, et al. Sci. Rep., 2014,4:6139

    21. [21]

      [21] Wild J, Rath J, Meijerink A, et al. Sol. Energ. Mat. Sol. C, 2010,94:2395-2398

    22. [22]

      [22] Deng K, Gong T, Hu L, et al. Opt. Express, 2011,19:1749-1754

    23. [23]

      [23] Jia G, You H, Liu K, et al. Langmuir, 2010,26:5122-5128

    24. [24]

      [24] Jia G, Yang M, Song Y, et al. Cryst. Growth Des., 2009,9: 301-307

    25. [25]

      [25] Thirumalai J, Chandramohan R, Valanarasu S, et al. J. Mater. Sci., 2009,44:3889-3899

    26. [26]

      [26] Ayyub P, Palkar V R, Chattopadhyay S, et al. Phys. Rev. B, 1995,51:6135-6138

    27. [27]

      [27] Boyer J, Manseau M, Murray J, et al. Langmuir, 2009,26: 1157-1164

    28. [28]

      [28] Miyakawa T, Dexter D L. Phys. Rev. B, 1970,1:2961-2969

    29. [29]

      [29] Wong H, Chan H, Hao J. Appl. Phys. Lett., 2009,95:22512

    30. [30]

      [30] Yang H, Zhang S, Chen X, et al. Anal. Chem., 2004,76: 1316-1321

    31. [31]

      [31] Yang L, Zhang Y, Li J, et al. Nanoscale, 2012,2:2805-2810

    32. [32]

      [32] Jiang T, Qin W, Di W, et al. CrystEngComm, 2012,14:2302-2307

    33. [33]

      [33] Chen Z, Liu Z, Liu Y, et al. J. Fluorine Chem., 2012,144: 157-164

  • 加载中
    1. [1]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    2. [2]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    3. [3]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    4. [4]

      Ning LISiyu DUXueyi WANGHui YANGTao ZHOUZhimin GUANPeng FEIHongfang MAShang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372

    5. [5]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    6. [6]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    7. [7]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    8. [8]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    9. [9]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    10. [10]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    11. [11]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    12. [12]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    13. [13]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    14. [14]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    15. [15]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    16. [16]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    17. [17]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    18. [18]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    19. [19]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    20. [20]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

Metrics
  • PDF Downloads(0)
  • Abstract views(241)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return