Citation: LI Yan-Bing, DUAN Xiao-Bo, HAN Ya-Miao, ZHU Ding, HUANG Li-Wu, CHEN Yun-Gui. Sulfur-Hydrothermal Carbon Composites for Cathode in High-Rate Lithium-Sulfur Batteries[J]. Chinese Journal of Inorganic Chemistry, ;2015, (4): 641-648. doi: 10.11862/CJIC.2015.073 shu

Sulfur-Hydrothermal Carbon Composites for Cathode in High-Rate Lithium-Sulfur Batteries

  • Corresponding author: CHEN Yun-Gui, 
  • Received Date: 25 September 2014
    Available Online: 1 January 2015

  • Sulfur-carbon composites as the cathode of Lithium-Sulfur batteries have shown excellent electrochemical performance for high power devices. To enhance rate performance of sulfur cathode for Li-S batteries, a carbon material consisted of non-uniform carbon spheres has been prepared by hydrothermal method. Sulfur disperses evenly on the surface of the carbon spheres via a melt-diffusion method. The as-prepared composite with a sulfur content of 52wt% delivers an initial discharge capacity of 1 174 mAh·g-1 and a reversible discharge capacity of 788 mAh·g-1 after 100 cycles at 0.2C. At a higher rate of 4C, the capacity stabilizes at around 600 mAh·g-1. During cycling, the coulombic efficiency is maintained above 90%. The results show that the carbon-sulfur composites with chain conductive network represents a promising cathode material for rechargeable lithium batteries because of the effective improvement of the electronic conductivity, the restraint of the volume expansion and the reduction of the shuttle effect.
  • 加载中
    1. [1]

      [1] Manthiram A, Fu Y, Su Y S. Acc. Chem. Res., 2012,46:1125-1134

    2. [2]

      [2] Bruce P G, Freunberger S A, Tarascon J M, et al. Nat. Mater., 2012,11:19-29

    3. [3]

      [3] Lu Y C, He Q, Gasteiger H A. J. Phys. Chem. C, 2014,118: 5733-5741

    4. [4]

      [4] Cheon S E, Choi S S, Han J S, et al. J. Electorchem. Soc., 2004,151(12):A2067-A2073

    5. [5]

      [5] Evers S, Nazar L F. Acc. Chem. Res., 2012,46(5):1135-1143

    6. [6]

      [6] He G, Ji X, Nazar L. Energy Environ. Sci., 2011,4:2878-2883

    7. [7]

      [7] Choi Y J, Chung Y D, Baek C Y, et al. J. Power Sources, 2008,184(2):548-552

    8. [8]

      [8] Liang X, Wen Z, Liu Y, et al. J. Power Sources, 2011,196: 3655-3658

    9. [9]

      [9] Geng X, Rao M, Li X, et al. J. Solid State Electrochem., 2013,17:987-992

    10. [10]

      [10] Lu S, Cheng Y, Wu X, et al. Nano Lett., 2013,13(6):2485-2489

    11. [11]

      [11] Rauh R D, Abraham K M, Pearson G F, et al. J. Electrochem. Soc., 1979,126(4):523-527

    12. [12]

      [12] He X, Pu W, Ren J, et al. Ionics, 2008,14(4):335-337

    13. [13]

      [13] Zhu Y, Zhang L, Schappacher F M, et al. J. Phys. Chem. C, 2008,112(23):8623-8628

    14. [14]

      [14] Zhang B, Qin X, Li G R, et al. Energy Environ. Sci., 2010,3(10):1531-1537

    15. [15]

      [15] Jayaprakash N, Shen J, Moganty S S, et al. Angew. Chem. Int. Ed., 2011,123(26):6026-6030

    16. [16]

      [16] Shin J H, Jung S S, Kim K W, et al. J. Mater. Sci.-Mater. El., 2002,13(12):727-733

    17. [17]

      [17] Wei S, Zhang H, Huang Y, et al. Energy Environ. Sci., 2011,4(3):736-740

    18. [18]

      [18] Su Y S, Manthiram A. Chem. Commun., 2012,48(70):8817-8819

    19. [19]

      [19] Marmorstein D, Yu T H, Cairns E J, et al. J. Power Sources, 2000,89(2):219-226

    20. [20]

      [20] Shin J H, Cairns E J. J. Electrochem. Soc., 2008,155(5): A368-A373

    21. [21]

      [21] Zheng G Y, Yang Y, Cha J J, et al. Nano Lett., 2011,11(10): 4462-4467

    22. [22]

      [22] Ji X, Evers S, Black R, et al. Nat. Commun., 2011,2:325-331

    23. [23]

      [23] Ji X L, Lee K T, Nazar L F. Nat. Mater., 2009,8(6):500-506

    24. [24]

      [24] Demir-Cakan R, Morcrette M, Nouar F, et al. J. Am. Chem. Soc., 2011,133:16154-16160

    25. [25]

      [25] Liang C D, Dudney N J, Howe J Y. Chem. Mater., 2009,21(19):4724-4730

  • 加载中
    1. [1]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    2. [2]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    3. [3]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    4. [4]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    5. [5]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    6. [6]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    7. [7]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    8. [8]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    9. [9]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    10. [10]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    11. [11]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    12. [12]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    13. [13]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    14. [14]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    15. [15]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    16. [16]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    17. [17]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    18. [18]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    19. [19]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    20. [20]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

Metrics
  • PDF Downloads(0)
  • Abstract views(609)
  • HTML views(171)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return