Citation: LI Yun-Ling, LI Lin-Zhi, WANG Shu-Hui. Effect of Pretreatment Time on Morphology and Photocatalytic Performance of Co3O4[J]. Chinese Journal of Inorganic Chemistry, ;2015, (3): 472-478. doi: 10.11862/CJIC.2015.066 shu

Effect of Pretreatment Time on Morphology and Photocatalytic Performance of Co3O4

  • Corresponding author: LI Yun-Ling, 
  • Received Date: 20 August 2014
    Available Online: 22 December 2014

    Fund Project: 河南科技学院2010年度科研启动经费(No.21001061003) (No.21001061003) 2014年新乡市重点科技攻关项目(No.ZG14028)资助项目。 (No.ZG14028)

  • Pure spinel Co3O4 powders with different morphologies were synthesized by hydrothermal-pyrolysis methods using cobalt chloride (CoCl2) and sodium carbonate (Na2O3) as the raw materials and sodium oleate (SOA) as the surfactant. The reaction process was followed by TG-DTA, XRD and SEM. The effect of hydrothermal time on the structure, the state of the products and the influence of structure on the photocatalytic performance were studied. The reaction mechanism was suggested. The results indicate that the hydrothermal time is the key to the morphology of the product. The catalytic performance is mainly related to the morphology of the final products.
  • 加载中
    1. [1]

      [1] Xu H L, Wang W Z. Angew. Chem. Int. Ed., 2007,46:1489-1492

    2. [2]

      [2] Li J, Liu X H, Han Q F, et al. J. Mater. Chem. A, 2013,1: 1246-1253

    3. [3]

      [3] Tan W F, Yu Y T, Wang M X, et al. Cryst. Growth Des., 2014, 14(1):157-164

    4. [4]

      [4] GU Shao-Nan(顾少楠), SUN He-Yun(孙和云), FAN Ying-Ju (范迎菊), et al. Chinese J. Inorg. Chem.(无机化学学报), 2013,29(6):1185-1191

    5. [5]

      [5] Wu R B, Qian X K, Rui X H, et al. Small, 2014,10(10): 1932-1938

    6. [6]

      [6] Jiao Q Z, Fu M, You C, et al. Inorg. Chem., 2012,51:11513-11520

    7. [7]

      [7] Wang X, Sumboja A, Khoo E, et al. J. Phys. Chem. C, 2012, 116:4930-4935

    8. [8]

      [8] Wang H T, Zhang L, Tan X H, et al. J. Phys. Chem. C, 2011, 115:17599-17605

    9. [9]

      [9] Zhu J J, Kailasam K, Fischer A, et al. ACS Catal., 2011,1: 342-347

    10. [10]

      [10] LÜ Yong-Ge(吕永阁), LI Yong(李勇), TA Na(塔娜), et al. Acta Phys.-Chim. Sin.(物理化学学报), 2014,30(2):382-388

    11. [11]

      [11] Lü L, Su Y G, Liu X Q, et al. J. Alloys Compd., 2013,553: 163-166

    12. [12]

      [12] Xiao X L, Liu X F, Zhao H, et al. Adv. Mater., 2012,24: 5762-5766

    13. [13]

      [13] Sharma S, Garg N, Ramanujachary K V, et al. Cryst. Growth Des., 2012,12:4202-4210

    14. [14]

      [14] Li L, Seng K H, Chen Z H, et al. Nanoscale, 2013,5:1922-1928

    15. [15]

      [15] He T, Chen D R, Jiao X L, et al. Chem. Mater., 2005,17: 4023-4030

    16. [16]

      [16] Zhu J B, Bai L F, Sun Y F, et al. Nanoscale, 2013,5:5241-5246

    17. [17]

      [17] Son M Y, Hong Y J, Kang Y C. Chem. Commun., 2013,49: 5678-5680

    18. [18]

      [18] Makhlouf M T, Abu-Zied B M, Mansoure T H. Met. Mater. Int., 2013,19(3):489-495

    19. [19]

      [19] Kishore P N R, Jeevanandam P. J. Nanosci. Nanotechnol., 2013,13:2908-2916

    20. [20]

      [20] Nassar M Y. Mater. Lett., 2013,94:112-115

    21. [21]

      [21] Xie L J, Li K X, Sun G H, et al. J. Solid State Electrochem., 2013,17:55-61

    22. [22]

      [22] Xu J, Cai J, Wang J M, et al. Electrochem. Commun., 2012, 25:119-123

    23. [23]

      [23] Li X, Xu G L, Fu F, et al. Electrochim. Acta, 2013,96:134-140

    24. [24]

      [24] Xia X H, Tu J P, Fan H J, et al. J. Mater. Chem., 2011,21: 9319-9325

    25. [25]

      [25] Li C C, Yin X M, Zeng H C, et al. Chem. Mater., 2009,21 (20):4984-4992

    26. [26]

      [26] Li Y L, Zhao J Z, Dan Y Y, et al. Chem. Eng. J., 2011,166: 428-434

    27. [27]

      [27] Li Y L, Zhao J Z, Zhao Y, et al. Chem. Res. Chin. Univ., 2013,29(6):1040-1044

    28. [28]

      [28] LIU Bing-Guo(刘秉国), PENG Jin-Hui(彭金辉), ZHANG Li-Bo(张利波), et al. J. Center South Univ.: Sci. Technol. Ed.(中南大学学报:自然科学版), 2011,42(2):356-360

    29. [29]

      [29] Feng X, Yang L, Liu Y L. Mater. Lett., 2010,64(24):2688-2691

    30. [30]

      [30] Wang X U, Yu J C, Ho C M, et al. Langmuir, 2005,21(6): 2552-2559

    31. [31]

      [31] Zhang L Z, Yu J C. Chem. Commun., 2003:2078-2079

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    3. [3]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    4. [4]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    5. [5]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    6. [6]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    7. [7]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    8. [8]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    9. [9]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    10. [10]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    11. [11]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    12. [12]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    13. [13]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    14. [14]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    15. [15]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    16. [16]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    17. [17]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    18. [18]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    19. [19]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    20. [20]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

Metrics
  • PDF Downloads(0)
  • Abstract views(105)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return