Citation: WANG Pei-Cao, SUN Hong-Juan, PENG Tong-Jiang, LIN Shun-Jia. Influence of Oxidation Degrees on the a-b Structures and Conductivity of Graphene Oxide Samples[J]. Chinese Journal of Inorganic Chemistry, ;2015, (2): 275-281. doi: 10.11862/CJIC.2015.060 shu

Influence of Oxidation Degrees on the a-b Structures and Conductivity of Graphene Oxide Samples

  • Corresponding author: SUN Hong-Juan, 
  • Received Date: 8 August 2014
    Available Online: 31 October 2014

    Fund Project: 国家自然科学基金(No.41272051) (No.41272051)西南科技大学博士基金(No.11ZX7135) (No.11ZX7135)西南科技大学研究生创新基金(No.14ycx069)资助项目 (No.14ycx069)

  • The graphene oxide samples with different oxidation degree were prepared by modified Hummers method followed ultrasonic stripping and subsequent processing. The evolution of oxygen-containing functional groups, structure, surface characteristics and electrical conductivity of the samples were carried out by XPS, XRD, AFM, UV-Vis and four-point probe method. The results show that monolayer graphene oxide with the thickness of 1.4 nm can be dispersed in the condition of water phase by ultrasonic. The monolayer graphene oxide reconfigured stacked along the c axis under the action of hydrogen bond force, led the layered condensate with better ordering to form. With the dosage of KMnO4 increasing, the oxygen-containing functional groups in the carbon basal plane keep increasing. Especially the adding of hydroxyl group (C-OH) led the maximal basal spacing along the a-b axis (d100 and d110) to continue increasing, and the values of d100 and d110 reach the maximum with the 3.0 g of KMnO4. The values of d100 and d110 slightly reducing with the 4.0 g of KMnO4 are due to the hydrolysis of partial C-OH. The increasing content of the oxygen-containing functional groups, especially the increasing content of C-O-C, led to the increasing of the energy gap and the conductivity dropping.
  • 加载中
    1. [1]

      [1] Stoller M D, Park S, Zhu Y, et al. Nano Lett., 2008,8(10): 3498-3502

    2. [2]

      [2] Balandin A A, Ghosh S, Bao W, et al. Nano Lett., 2008,8 (3):902-907

    3. [3]

      [3] Lee C, Wei X, Kysar J W, et al. Science, 2008,321(5887): 385-388

    4. [4]

      [4] Rafiee M A, Lu W, Thomas A V, et al. ACS Nano, 2010,4 (12):7415-7420

    5. [5]

      [5] Shah J, Kotnala R K, Singh B, et al. Sens. Actuators B, 2007,128:306-311

    6. [6]

      [6] Lerf A, He H, Forster M, et al. J. Phys. Chem., 1998,102 (23):4477-4482

    7. [7]

      [7] Chua C K, Sofer Z, Pumera M. Chem. Eur. J., 2012,18(42): 13453-13459

    8. [8]

      [8] WAN Chen(万臣), PENG Tong-Jiang(彭同江), SUN Hong-Juan(孙红娟), et al. Chinese J. Inorg. Chem.(无机化学学报), 2012,28(5):915-921

    9. [9]

      [9] Shao G, Lu Y, Wu F, et al. J. Mater. Sci., 2012,47(10):4400-4409

    10. [10]

      [10] LIU Bo(刘波). Southwest University of Science and Techno-logy Master Degree Thesis(西南科技大学硕士论文). 2012.

    11. [11]

      [11] Hofmann U, Kong E. Z. Anorg. Allg. Chem., 1939,234(4):311-336

    12. [12]

      [12] Ruess G. Monatsh. Chem., 1946,76:381-417

    13. [13]

      [13] Mermoux M, Chabre Y, Rousseau A, et al. Carbon, 1991,29 (3):469-474

    14. [14]

      [14] Scholz W, Boehm H P. Z. Anorg. Allg. Chem., 1969,369(3/4/5/6):327-340

    15. [15]

      [15] Nakajima T, Mabuchi A, Haguwara R. Carbon, 1988,26(3): 357-361

    16. [16]

      [16] FU Ling(傅玲), LIU Hong-Bo(刘洪波), ZOU Yang-Hong(邹艳红), et al. Carbon(炭素), 2006(4):10-14

    17. [17]

      [17] Nakajima T, Matsuo Y. Carbon, 1994,32(3):469-475

    18. [18]

      [18] YANG Yong-Hui(杨勇辉), SUN Hong-Juan(孙红娟), PENG Tong-Jiang(彭同江). Acta Phys.-Chim. Sin.(物理化学学报), 2011,27(3):736-742

    19. [19]

      [19] HUANG Qiao(黄桥), SUN Hong-Juan(孙红娟), YANG Yong-Hui(杨勇辉), et al. Chinese J. Inorg. Chem.(无机化学学报), 2011,27(9):1721-1726

    20. [20]

      [20] LIN Shun-Jia(林舜嘉), SUN Hong-Juan(孙红娟), PENG Tong-Jiang(彭同江), et al. Chinese J. Inorg. Chem.(无机化学学报), 2013,29(11):2333-2338

    21. [21]

      [21] Acik M, Mattevi C, Gong C, et al. ACS Nano, 2010,4(10): 5861-5868

    22. [22]

      [22] HAN Zhi-Dong(韩志东), WANG Jian-Qi(王建祺). Chinese J. Inorg. Chem.(无机化学学报), 2003,19(12):1336-1370

    23. [23]

      [23] WANG Ji-Xue(王纪学), WANG Ke-Zhi(王科志), YANG Hong-Qiang(杨洪强), et al. Acta Chim. Sinica(化学学报), 2011,69(21):2539-2542

    24. [24]

      [24] ZHANG Shao-Yan(张邵岩), LI Yang(李英), LIANG Hui-Xia (梁慧霞), et al. J. Synth. Cryst.(人工晶体学报), 2011,40(1): 229-232

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    3. [3]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    4. [4]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    5. [5]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    6. [6]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    7. [7]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    8. [8]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    9. [9]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    10. [10]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    11. [11]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    12. [12]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    13. [13]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    14. [14]

      Zhenhao WangYuliang TangRuyu LiShuai TianYu TangDehai Li . Bioinspired synthesis of cochlearol B and ganocin A. Chinese Chemical Letters, 2024, 35(7): 109247-. doi: 10.1016/j.cclet.2023.109247

    15. [15]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    16. [16]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    17. [17]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    18. [18]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    19. [19]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    20. [20]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

Metrics
  • PDF Downloads(0)
  • Abstract views(390)
  • HTML views(58)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return