Citation: WANG Min, YANG Chang-Xiu, ZHENG Hao-Yan, LANG Hong-Xia, BAO Qi, SONG Wan-Yi, SONG En-Jun. Effect of pH value on Morphology and Visible-light Photocatalytic Performance of Bi2MoO6 Crystallites[J]. Chinese Journal of Inorganic Chemistry, ;2015, (2): 309-316. doi: 10.11862/CJIC.2015.055 shu

Effect of pH value on Morphology and Visible-light Photocatalytic Performance of Bi2MoO6 Crystallites

  • Corresponding author: WANG Min, 
  • Received Date: 30 September 2014
    Available Online: 3 November 2014

    Fund Project: 国家自然科学基金青年基金(No.21207093) (No.21207093)辽宁省高等学校优秀人才支持计划(No.LJQ2014023) (No.LJQ2014023)沈阳理工大学创新创业训练项目(No.14hh014)资助. (No.14hh014)

  • The Bi2MoO6 crystallites were synthesized by a simple hydrothermal method using (NH4)6Mo7O24·4H2Oand Bi(NO3)3·5H2O as source materials and the effect of the pHvalue was studied on preparation of Bi2MoO6 crystallites. The samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), low temperature nitrogen adsorption-desorption, X-ray photoelectron spectroscopy (XPS) and UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS). The results show that the pHvalue has great influence on the phase composition, morphology and photocatalytic performance of Bi2MoO6 crystallites. Pure Bi2MoO6 is obtained with pHvalues of 1 to 7 and Bi3.64Mo0.36O6.55 is produced when the pHvalue is 9 or 11. The morphology of Bi2MoO6 can be controlled from nanorods, nanosheets to nanoparticles by adjusting the pHvalue. The photocatalytic activity under visible light (λ≥420 nm) and the effect of the pHvalue on the activity were evaluated using photocatalytic degradation of the Rhodamine B (RhB). The results indicate that the highest photocatalytic activity is obtained with the pHvalue of 7. Under visible light irradiation, the degradation rate of 5 mg·L-1 RhBwithin 50 min is 85%.
  • 加载中
    1. [1]

      [1] Adhikari R, Gyawali G, Cho S H, et al. J. Solid State Chem., 2014,209:74-81

    2. [2]

      [2] Sun Y Y, Wang W Z, Sun S M, et al. Mater. Res. Bull., 2014,52:50-55

    3. [3]

      [3] Zou J P, Ma J, Huang Q, et al. Appl. Catal. B: Environ., 2014,156-157:447-455

    4. [4]

      [4] Zhou T F, Hu J C, Li J L. Appl. Catal. B: Environ., 2011, 110:221-230

    5. [5]

      [5] Adhikari R, Joshi B, Narro-Garcia R, et al. J. Lumin., 2014, 145:866-871

    6. [6]

      [6] Xu Y S, Zhang W D. Appl. Catal. B: Environ., 2013,140-141:306-316

    7. [7]

      [7] Zhang P, Shao C L, Zhang M Y, et al. J. Hazard. Mater., 2012,217-218:422-428

    8. [8]

      [8] Park J H, Noh H, Park J W, et al. Appl. Catal. A: Gen., 2012,431-432:137-143

    9. [9]

      [9] Masteri-Farahani M, Hosseini H S. Powder Technol., 2012, 228:228-230

    10. [10]

      [10] Guan M Y, He X H, Shang T M, et al. Prog. Nat. Sci.: Mater. Int., 2012,22(4):334-340

    11. [11]

      [11] Wang P F, Ao Y H, Wang C, et al. Carbon, 2012,50:5256-5264

    12. [12]

      [12] Gruar R, Tighe C J, Reilly L M, et al. Solid State Sci., 2010,12:1683-1686

    13. [13]

      [13] Ono T, Utsumi K, Tsukamoto, et al. J. Mol. Catal. A: Chem., 2010,318:94-100

    14. [14]

      [14] Li H H, Li K W, Wang H. Mater. Chem. Phys., 2009,116: 134-142

    15. [15]

      [15] Zhao X, Xu T G, Yao W Q, et al. Thin Solid Films, 2009, 517:5813-5818

    16. [16]

      [16] LI Hong-Hua(李红花), LI Kun-Wei(李坤威), WANG Hao (汪浩), et al. Chinese J. Inorg. Chem.(无机化学学报), 2009, 25(3):512-516

    17. [17]

      [17] Cruz A M L, Alfaro S O. Solid State Sci., 2009,11:829-835

    18. [18]

      [18] Mikhailovskaya Z A, Buyanova E S, Petrova S A, et al. J. Solid State Chem., 2013,204:9-15

    19. [19]

      [19] Scott P R, Crow J A, Maczka M, et al. J. Solid State Chem., 2012,194:15-18

    20. [20]

      [20] Zheng K B, Zhou Y, Gu L L, et al. Sens. Actuators B: Chem., 2010,148:240-246

    21. [21]

      [21] Xu C, Zou D B, Wang L H, et al. Ceram. Int., 2009,35: 2099-2102

    22. [22]

      [22] Zheng Y, Duan F, Wu J, et al. J. Mol. Catal. A: Chem., 2009,303:9-14

    23. [23]

      [23] Miao Y C, Pan G F, Huo Y N, et al. Dyes Pigm., 2013,99: 382-389

    24. [24]

      [24] Zhang T, Huang J F, Zhou S, et al. Ceram. Int., 2013,39: 7391-7394

    25. [25]

      [25] CHEN Yuan(陈渊), YANG Jia-Tian(杨家添), XIE Zu-Fang (谢祖芳), et al. J. Chinese Ceram. Soc.(硅酸盐学报), 2014, 42(1):80-88

    26. [26]

      [26] Liu T X, Li B X, Hao Y G, et al. Chem. Eng. J., 2014,244: 382-390

    27. [27]

      [27] Sun Y Y, Wang W Z, Zhang L, et al. Mater. Res. Bull., 2013,48:4357-4361

    28. [28]

      [28] Zou J P, Luo S L, Zhang L Z, et al. Appl. Catal. B: Environ., 2013,140-141:608-618

    29. [29]

      [29] Zhao Z X, Dai H X, Deng J G, et al. Chin. J. Catal., 2013, 34:1617-1626

    30. [30]

      [30] Lv W Z, Huang D Z, Chen Y M, et al. Ceram. Int., 2014,40: 12661-12668

    31. [31]

      [31] Xie F X, Mao X M, Fan C M, et al. Mater. Sci. Semicond. Process., 2014,27:380-389

    32. [32]

      [32] Ma Y F, Jiang H Q, Zhang X C, et al. Cream. Int., 2014,40: 16485-16493

  • 加载中
    1. [1]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    2. [2]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    3. [3]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    4. [4]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    5. [5]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    6. [6]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    7. [7]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    8. [8]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    9. [9]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    10. [10]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    11. [11]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    12. [12]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    13. [13]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    14. [14]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    15. [15]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    16. [16]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    17. [17]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    18. [18]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    19. [19]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    20. [20]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

Metrics
  • PDF Downloads(0)
  • Abstract views(241)
  • HTML views(31)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return