Citation: JI Ke-Ming, MENG Fan-Hui, GAO Yuan, LI Zhong. Solution Combustion Prepared Ni-Based Catalysts and Their Catalytic Performance for Slurry Methanation[J]. Chinese Journal of Inorganic Chemistry, ;2015, (2): 267-274. doi: 10.11862/CJIC.2015.050 shu

Solution Combustion Prepared Ni-Based Catalysts and Their Catalytic Performance for Slurry Methanation

  • Corresponding author: LI Zhong, 
  • Received Date: 4 August 2014
    Available Online: 7 November 2014

    Fund Project: 国家"973"计划(No.2012CB723105) (No.2012CB723105)山西省青年基金(No.2013021007-4) (No.2013021007-4)中国博士后科学基金(2013M541210) (2013M541210)太原理工大学校青年团队基金(No.2013T091)资助项目 (No.2013T091)

  • Ni-Al2O3, Ni-ZrO2, Ni-La2O3 and Ni-CeO2 catalysts were prepared by solution combustion method using Al(NO3)3, ZrO(NO3)2, La(NO3)3 and Ce(NO3)3 (mixed with Ni(NO3)2 and urea in aqueous solution) as the support precursor, respectively. The COmethanation performances of catalysts were studied in slurry-bed reactor, and the catalysts were characterized by low temperature N2 adsorption-desorption, XRD, SEM, TEM, H2-TPRand H2 chemsorption. The results show that the combustion preparation process of Ni-Al2O3 catalyst using Al(NO3)2 as the precursor is stable for long-duration(up to 23 s) and the catalyst has larger surface area (468 m2·g-1) and metal surface area (10 m2·g-1), smaller Ni particle (3~5 nm), excellent dispersion of Ni, and the catalyst has good catalytic performance, whose COconversion and CH4 selectivity are 94% and 95%, respectively, and no catalyst deactivation is observed in 100h. The preparation process for catalysts using ZrO(NO3)2 and La(NO3)3 as precursors does not show obvious flame and burning time is also shorter (12 s and 5 s), the surface areas, metal surface areas and catalytic performances are lower than that of Ni-Al2O3 while that for the catalyst using Ce(NO3)2 as the precursor has high intensity combustion. The catalyst obtained from Ce(NO3)2 precursor shows lower surface area (22 m2·g-1) and metal surface area (5 m2·g-1), larger Ni particle and worse dispersion of Ni and the worst methanation catalytic performance with COconversion and CH4 selectivity of 41% and 89%, respectively.
  • 加载中
    1. [1]

      [1] Kopyscinski J, Schildhauer T J, Biollaz S M A. Fuel, 2010,89 (8):1763-1783

    2. [2]

      [2] Zhang J, Bai Y, Zhang Q, et al. Fuel, 2014,132:211-218

    3. [3]

      [3] Gao J, Wang Y, Ping Y, et al. RSC Adv., 2012,2(6):2358-2368

    4. [4]

      [4] CUI Xiao-Xi(崔晓曦), FAN Hui(范辉), ZHENG Hua-Yan(郑华艳), et al. Chinese J. Inorg. Chem.(无机化学学报), 2012, 28(3):495-502

    5. [5]

      [5] CUI Xiao-Xi(崔晓曦), MENG Fan-Hui(孟凡会), HE Zhong (何忠), et al. Chinese J. Inorg. Chem.(无机化学学报), 2013, 30(2):277-283

    6. [6]

      [6] Zhao A, Ying W, Zhang H, et al. Catal. Comun., 2012,17: 34-38

    7. [7]

      [7] Tada S, Shimizu T, Kameyama H, et al. Int. J. Hydrogen Energy, 2012,37(7):5527-5531

    8. [8]

      [8] Cai M, Wen J, Chu W, et al. J. Nat. Gas Chem., 2011,20 (3):318-324

    9. [9]

      [9] SONG Huan-Ling(宋焕玲), YANG Jian(杨建), ZHAO Jun(赵军), et al. Chin. J. Catal.(催化学报), 2010,31(1):21-23

    10. [10]

      [10] Meng F H, Zhong P Z, Li Z, et al. J. Chem, 2014,2014:1-7

    11. [11]

      [11] MENG Fan-Hui(孟凡会), LIU Jun(刘军), LI Zhong(李忠), et al. J. Fuel Chem. Technol.(燃料化学学报), 2014,42(2): 231-237

    12. [12]

      [12] Pfeil T L, Pourpoint T L, Groven L J. Int. J. Hydrogen Energy, 2014,39(5):2149-2159

    13. [13]

      [13] Dinka P, Mukasyan A S. J. Phys. Chem. B, 2005,109(46): 21627-21633

    14. [14]

      [14] Sharma S, Hu Z, Zhang P, et al. J. Catal., 2011,278(2):297-309

    15. [15]

      [15] Colussi S, Gayen A, Llorca J, et al. Ind. Eng. Chem. Res., 2012,51(22):7510-7517

    16. [16]

      [16] González-Cortés S L, Imbert F E. Appl. Catal. A, 2013,452: 117-131

    17. [17]

      [17] Jung C H, Jalota S, Bhaduri S B. Mater. Lett., 2005,59(19/20):2426-2432

    18. [18]

      [18] LU Chang(路长), ZHOU Jian-Jun(周建军), LIN Qi-Zhao(林其钊), et al. J. Combust. Sci. Technol.(燃烧科学与技术), 2005,11(1):41-46

    19. [19]

      [19] WU Shu-Rong(吴淑荣), XIONG Wei-Miao(熊为淼), HE Ming-An(何明安), et al. J. Northwest Univ.(西北大学学报), 1981,22(3):32-38

    20. [20]

      [20] Zou X, Wang X, Li L, et al. Int. J. Hydrogen Energy, 2010, 35(22):12191-12200

    21. [21]

      [21] Yang J, Wang X, Li L, et al. Appl. Catal. B, 2010,96(1-2): 232-237

    22. [22]

      [22] Koo K Y, Roh H-S, Seo Y T, et al. Int. J. Hydrogen Energy, 2008,33(8):2036-2043

    23. [23]

      [23] Zhang J, Xu H, Jin X, et al. Appl. Catal. A, 2005,290(1-2): 87-96

    24. [24]

      [24] Nagai M, Zahidul A M, Kunisaki Y, et al. Appl. Catal. A, 2010,383(1-2):58-65

    25. [25]

      [25] Kam R, Selomulya C, Amal R, et al. J. Catal., 2010,273(1): 73-81

    26. [26]

      [26] LIU Na(刘娜), DU Xia-Ru(杜霞茹), YUAN Zhong-Shan(袁中山), et al. J. Chinese Soc. Rare Earths(中国稀土学报), 2005,23(1):26-30

  • 加载中
    1. [1]

      Haiqiang Lin Weizheng Weng Jingdong Lin Mingshu Chen Xueming Fang Lefu Yang . Diverse Variables-Driven Catalytic Optimization: Experimental Enhancement and Instructional Design for Selective Methane Oxidation on Supported Nickel-based Catalysts. University Chemistry, 2025, 40(11): 327-336. doi: 10.12461/PKU.DXHX202505106

    2. [2]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    3. [3]

      Wenjuan SHIYuke LUXiuyuan LILei HOUYaoyu WANG . Mg(Ⅱ) metal-organic frameworks based on biphenyltetracarboxylic acid: Synthesis and CO2 adsorption and catalytic conversion performance. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2455-2463. doi: 10.11862/CJIC.20250220

    4. [4]

      Ran YuChen HuRuili GuoRuonan LiuLixing XiaCenyu YangJianglan Shui . Catalytic Effect of H3PW12O40 on Hydrogen Storage of MgH2. Acta Physico-Chimica Sinica, 2025, 41(1): 100001-0. doi: 10.3866/PKU.WHXB202308032

    5. [5]

      Xiaogang Liu Mengyu Chen Yanyan Li Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007

    6. [6]

      Qingtao CHENXiangdong SHIXianghai RAOLiying JIANGChunxiao JIAFenghua CHEN . Catalytic and in situ surface-enhanced Raman scattering detection properties of graphene oxide/gold nanorod assembly. Chinese Journal of Inorganic Chemistry, 2026, 42(1): 120-128. doi: 10.11862/CJIC.20250091

    7. [7]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    8. [8]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    9. [9]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    10. [10]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    11. [11]

      Kangjuan ChengChunxiao LiuYoupeng WangQiu JiangTingting ZhengXu LiChuan Xia . Design of noble metal catalysts and reactors for the electrosynthesis of hydrogen peroxide. Acta Physico-Chimica Sinica, 2025, 41(10): 100112-0. doi: 10.1016/j.actphy.2025.100112

    12. [12]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    13. [13]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    14. [14]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    15. [15]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    16. [16]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    17. [17]

      Yongxin LIUXingchen LIHongjia LIUDanni LITao ZHANGXi CHEN . Enhancement effect of Fe3O4 conversion to MIL-100(Fe) on activation of persulfate for degradation of antibiotic. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2503-2513. doi: 10.11862/CJIC.20250169

    18. [18]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    19. [19]

      Wenruo NIHongpeng LIYun ZHANGYiran TIANJiehui RUIYingcheng TONGXiaolin PIZhenyan TANG . Research progress of ruthenium alloy catalysts in hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2026, 42(1): 23-44. doi: 10.11862/CJIC.20250188

    20. [20]

      Qinhui GuanYuhao GuoNa LiJing LiTingjiang Yan . Molecular sieve-mediated indium oxide catalysts for enhancing photocatalytic CO2 hydrogenation. Acta Physico-Chimica Sinica, 2025, 41(11): 100133-0. doi: 10.1016/j.actphy.2025.100133

Metrics
  • PDF Downloads(0)
  • Abstract views(517)
  • HTML views(40)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return