Citation: JI Ke-Ming, MENG Fan-Hui, GAO Yuan, LI Zhong. Solution Combustion Prepared Ni-Based Catalysts and Their Catalytic Performance for Slurry Methanation[J]. Chinese Journal of Inorganic Chemistry, ;2015, (2): 267-274. doi: 10.11862/CJIC.2015.050 shu

Solution Combustion Prepared Ni-Based Catalysts and Their Catalytic Performance for Slurry Methanation

  • Corresponding author: LI Zhong, 
  • Received Date: 4 August 2014
    Available Online: 7 November 2014

    Fund Project: 国家"973"计划(No.2012CB723105) (No.2012CB723105)山西省青年基金(No.2013021007-4) (No.2013021007-4)中国博士后科学基金(2013M541210) (2013M541210)太原理工大学校青年团队基金(No.2013T091)资助项目 (No.2013T091)

  • Ni-Al2O3, Ni-ZrO2, Ni-La2O3 and Ni-CeO2 catalysts were prepared by solution combustion method using Al(NO3)3, ZrO(NO3)2, La(NO3)3 and Ce(NO3)3 (mixed with Ni(NO3)2 and urea in aqueous solution) as the support precursor, respectively. The COmethanation performances of catalysts were studied in slurry-bed reactor, and the catalysts were characterized by low temperature N2 adsorption-desorption, XRD, SEM, TEM, H2-TPRand H2 chemsorption. The results show that the combustion preparation process of Ni-Al2O3 catalyst using Al(NO3)2 as the precursor is stable for long-duration(up to 23 s) and the catalyst has larger surface area (468 m2·g-1) and metal surface area (10 m2·g-1), smaller Ni particle (3~5 nm), excellent dispersion of Ni, and the catalyst has good catalytic performance, whose COconversion and CH4 selectivity are 94% and 95%, respectively, and no catalyst deactivation is observed in 100h. The preparation process for catalysts using ZrO(NO3)2 and La(NO3)3 as precursors does not show obvious flame and burning time is also shorter (12 s and 5 s), the surface areas, metal surface areas and catalytic performances are lower than that of Ni-Al2O3 while that for the catalyst using Ce(NO3)2 as the precursor has high intensity combustion. The catalyst obtained from Ce(NO3)2 precursor shows lower surface area (22 m2·g-1) and metal surface area (5 m2·g-1), larger Ni particle and worse dispersion of Ni and the worst methanation catalytic performance with COconversion and CH4 selectivity of 41% and 89%, respectively.
  • 加载中
    1. [1]

      [1] Kopyscinski J, Schildhauer T J, Biollaz S M A. Fuel, 2010,89 (8):1763-1783

    2. [2]

      [2] Zhang J, Bai Y, Zhang Q, et al. Fuel, 2014,132:211-218

    3. [3]

      [3] Gao J, Wang Y, Ping Y, et al. RSC Adv., 2012,2(6):2358-2368

    4. [4]

      [4] CUI Xiao-Xi(崔晓曦), FAN Hui(范辉), ZHENG Hua-Yan(郑华艳), et al. Chinese J. Inorg. Chem.(无机化学学报), 2012, 28(3):495-502

    5. [5]

      [5] CUI Xiao-Xi(崔晓曦), MENG Fan-Hui(孟凡会), HE Zhong (何忠), et al. Chinese J. Inorg. Chem.(无机化学学报), 2013, 30(2):277-283

    6. [6]

      [6] Zhao A, Ying W, Zhang H, et al. Catal. Comun., 2012,17: 34-38

    7. [7]

      [7] Tada S, Shimizu T, Kameyama H, et al. Int. J. Hydrogen Energy, 2012,37(7):5527-5531

    8. [8]

      [8] Cai M, Wen J, Chu W, et al. J. Nat. Gas Chem., 2011,20 (3):318-324

    9. [9]

      [9] SONG Huan-Ling(宋焕玲), YANG Jian(杨建), ZHAO Jun(赵军), et al. Chin. J. Catal.(催化学报), 2010,31(1):21-23

    10. [10]

      [10] Meng F H, Zhong P Z, Li Z, et al. J. Chem, 2014,2014:1-7

    11. [11]

      [11] MENG Fan-Hui(孟凡会), LIU Jun(刘军), LI Zhong(李忠), et al. J. Fuel Chem. Technol.(燃料化学学报), 2014,42(2): 231-237

    12. [12]

      [12] Pfeil T L, Pourpoint T L, Groven L J. Int. J. Hydrogen Energy, 2014,39(5):2149-2159

    13. [13]

      [13] Dinka P, Mukasyan A S. J. Phys. Chem. B, 2005,109(46): 21627-21633

    14. [14]

      [14] Sharma S, Hu Z, Zhang P, et al. J. Catal., 2011,278(2):297-309

    15. [15]

      [15] Colussi S, Gayen A, Llorca J, et al. Ind. Eng. Chem. Res., 2012,51(22):7510-7517

    16. [16]

      [16] González-Cortés S L, Imbert F E. Appl. Catal. A, 2013,452: 117-131

    17. [17]

      [17] Jung C H, Jalota S, Bhaduri S B. Mater. Lett., 2005,59(19/20):2426-2432

    18. [18]

      [18] LU Chang(路长), ZHOU Jian-Jun(周建军), LIN Qi-Zhao(林其钊), et al. J. Combust. Sci. Technol.(燃烧科学与技术), 2005,11(1):41-46

    19. [19]

      [19] WU Shu-Rong(吴淑荣), XIONG Wei-Miao(熊为淼), HE Ming-An(何明安), et al. J. Northwest Univ.(西北大学学报), 1981,22(3):32-38

    20. [20]

      [20] Zou X, Wang X, Li L, et al. Int. J. Hydrogen Energy, 2010, 35(22):12191-12200

    21. [21]

      [21] Yang J, Wang X, Li L, et al. Appl. Catal. B, 2010,96(1-2): 232-237

    22. [22]

      [22] Koo K Y, Roh H-S, Seo Y T, et al. Int. J. Hydrogen Energy, 2008,33(8):2036-2043

    23. [23]

      [23] Zhang J, Xu H, Jin X, et al. Appl. Catal. A, 2005,290(1-2): 87-96

    24. [24]

      [24] Nagai M, Zahidul A M, Kunisaki Y, et al. Appl. Catal. A, 2010,383(1-2):58-65

    25. [25]

      [25] Kam R, Selomulya C, Amal R, et al. J. Catal., 2010,273(1): 73-81

    26. [26]

      [26] LIU Na(刘娜), DU Xia-Ru(杜霞茹), YUAN Zhong-Shan(袁中山), et al. J. Chinese Soc. Rare Earths(中国稀土学报), 2005,23(1):26-30

  • 加载中
    1. [1]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    2. [2]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    3. [3]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    4. [4]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    5. [5]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    6. [6]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    7. [7]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    8. [8]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    9. [9]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    10. [10]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    11. [11]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    12. [12]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    13. [13]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    14. [14]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    15. [15]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    16. [16]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    17. [17]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    18. [18]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    19. [19]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    20. [20]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

Metrics
  • PDF Downloads(0)
  • Abstract views(96)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return