Citation: LIAO Ming-Jia, QIAO Lei, XIAO Peng, ZHANG Yun-Huai, CHEN Gang-Cai, ZHOU Zhi-En, HE Xiao-Lan, JIE Fang-Fang. Preparation of Silicon Nanowires Array by Wet Chemistry Methods and Photoelectrochemical Hydrogen Generation Performance Analysis[J]. Chinese Journal of Inorganic Chemistry, ;2015, (3): 439-445. doi: 10.11862/CJIC.2015.043 shu

Preparation of Silicon Nanowires Array by Wet Chemistry Methods and Photoelectrochemical Hydrogen Generation Performance Analysis

  • Received Date: 6 August 2014
    Available Online: 26 October 2014

    Fund Project: 重庆市教委科学技术研究(No.KJ133801)资助项目。 (No.KJ133801)

  • To explore the similarities and differences of hydrogen generation performance of silicon nanowires array (SiNWs array) photocathode prepared by different methods, we adopted two-step metal-catalyzed electroless etching method (TMCEE), one-step metal-catalyzed electroless etching method (OMCEE) and anodic oxidation etching method (AOE) to fabricate silicon nanowires array as a photocathode material for photoelectrochemical hydrogen generation. Comparing with morphology, crystalline, anti-reflection characterization by FESEM, XRD and UV-Vis-IR DRS means, SiNWs array by TMCEE maintained better crystal structure and less surface defects than the samples prepared by the other two methods. Photoelectrochemical tests showed that the performance of SiNWs array by TMCEE was optimal. The photocurrent density value of SiNWs array by TMCEE was 4 times than the one by OMCEE, and 40 times than the one by AOE. The charge transfer resistance of SiNWs array by TMCEE was only 1/3 of SiNWs array by OMCEE, and 1/1 000 of SiNWs array by AOE.
  • 加载中
    1. [1]

      [1] Walter M G, Warren E L, McKone J R, et al. Chem. Rev., 2010,110(11):6446-6473

    2. [2]

      [2] Lewis N S. Science, 2007,315(5813):798-801

    3. [3]

      [3] ZHANG Xiao-Yan(张晓艳), LI Hao-Peng(李浩鹏), CUI Xiao -Li(崔晓莉). Chinese J. Inorg. Chem.(无机化学学报), 2009, 25(11):1903-1907

    4. [4]

      [4] WANG Gui(王桂), WANG YAN-Ji(王延吉), SONG Bao-Jun (宋宝俊), et al. Chinese J. Inorg. Chem.(无机化学学报), 2003,19(9):988-992

    5. [5]

      [5] LI Cao-Long(李曹龙), ZHAO Yu-Ting(赵宇婷), CAO Fei(曹 菲), et al. Chinese J. Inorg. Chem.(无机化学学报), 2013,29 (12):2535-2542

    6. [6]

      [6] Hagedorn K, Collins S, Maldonado S. J. Electrochem. Soc., 2010,157(11):D588-D592

    7. [7]

      [7] GUO Guo-Long(郭国龙), HUANG Jian-Hua(黄建花). Chinese J. Inorg. Chem.(无机化学学报), 2011,27(2):214-218

    8. [8]

      [8] Lasa H I D, Rosales B S. Advances in Chemical Engineering-Photocatalytic Technologies. Netherlands: Elsevier, 2009:58

    9. [9]

      [9] Chen X, Shen S, Guo L, et al. Chem. Rev., 2010,110(11): 6503-6570

    10. [10]

      [10] LIU Li(刘莉), CAO Yang(曹阳), HE Jun-Hui(贺军辉), et al. Progress in Chemistry(化学进展), 2013,25(2/3):248-259

    11. [11]

      [11] Huang Z, Geyer N, Werner P, et al. Adv. Mater., 2011,23 (2):285-308

    12. [12]

      [12] Song T, Lee S T, Sun B. Nano Energy, 2012,1(5):654-673

    13. [13]

      [13] Wang Y, Wang T, Da P, et al. Adv. Mater., 2013,25(37): 5177-5195

    14. [14]

      [14] Peng K Q, Wang X, Li L, et al. Nano Today, 2013,8(1):75-97

    15. [15]

      [15] Peng K Q, Huang Z P, Zhu J. Adv. Mater., 2004,16(1):73-76

    16. [16]

      [16] Peng K Q, Yan Y J, Gao S P, et al. Adv. Funct. Mater., 2003,13(2):127-132

    17. [17]

      [17] Chen H, Wang H, Zhang X H, et al. Nano Lett., 2010,10(3): 864-868

    18. [18]

      [18] Peng K, Wang X, Lee S T. Appl. Phys. Lett., 2008,92(16): 163103

    19. [19]

      [19] Yuan G, Mitdank R, Mogilatenko A, et al. J. Phys. Chem. C, 2012,116(25):13767-13773

    20. [20]

      [20] Hochbaum A I, Gargas D, Hwang Y J, et al. Nano Lett., 2009,9(10):3550-3554

    21. [21]

      [21] Peng K Q, Wu Y, Fang H, et al. Angew. Chem. Int. Edit., 2005,44(18):2737-2742

    22. [22]

      [22] Oh I, Kye J, Hwang S. Nano Lett., 2012,12(1):298-302

    23. [23]

      [23] Geyer N, Fuhrmann B, Huang Z, et al. J. Phys. Chem. C, 2012,116(24):13446-13451

    24. [24]

      [24] Peng K Q, Hu J J, Yan Y J, et al. Adv. Funct. Mater., 2006, 16(3):387-394

    25. [25]

      [25] Kang Z H, Zhang Z D, Zhang M L, et al. J. Am. Chem. Soc., 2007,129(17): 5326-5327

    26. [26]

      [26] Nava R. J. Phys. D: Appl. Phys., 2010,43(45):455102

    27. [27]

      [27] Kang Z, Tsang C H A, Wong N B, et al. J. Am. Chem. Soc., 2007,129(40):12090-12091

    28. [28]

      [28] Yi J, Lee D H, Park W I. Chem. Mater., 2011,23(17):3902-3906

    29. [29]

      [29] Wagner R S, Ellis W C. Appl. Phys. Lett., 1964,4(5):89-93

    30. [30]

      [30] Shin N, Filler M A. Nano Lett., 2012,12(6):2865-2870

    31. [31]

      [31] Sainiemi L, Jokinen V, Shah A, et al. Adv. Mater., 2011,23 (1):122

    32. [32]

      [32] Garnett E, Yang P. Nano Lett., 2010,10(3):1082-1087

    33. [33]

      [33] Jansen H, Deboer M, Legtenberg R, et al. J. Micromech. Microeng., 1995,5(2):115-120

    34. [34]

      [34] Hwang Y J, Boukai A, Yang P. Nano Lett., 2009,9(1):410-415

    35. [35]

      [35] Peng K Q, Wang X, Wu X L, et al. Nano Lett., 2009,9(11): 3704-3709

    36. [36]

      [36] Wang X, Peng K Q, Pan X J, et al. Angew. Chem. Int. Edit., 2011,50(42):9861-9865

    37. [37]

      [37] Huang Z, Zhong P, Wang C, et al. ACS Appl. Mater. Interfaces, 2013,5(6):1961-1966

    38. [38]

      [38] Yang T, Wang H, Ou X M, et al. Adv. Mater., 2012,24(46): 6199-6203

    39. [39]

      [39] Tran P D, Pramana S S, Kale V S, et al. Chem.-Eur. J., 2012,18(44):13994-13999

    40. [40]

      [40] Peng K Q, Fang H, Hu J J, et al. Chem.-Eur. J., 2006,12 (30):7942-7947

    41. [41]

      [41] Wang K Y, Liu G H, Hoivik N, et al. Chem. Soc. Rev., 2014,43(5):1476-1500

    42. [42]

      [42] HE Meng(何萌), LIU Guo-Zhen(刘国珍), QIU Jie(仇杰), et al. Acta Phys. Sin.(物理学报), 2008,57(2):1236-1240

    43. [43]

      [43] Chieh Y C,Yu C C, Lu F H. Appl. Phys. Lett., 2007,90(3): 032904

    44. [44]

      [44] Joseph M, Lee H Y, Tabata H, et al. J. Appl. Phys., 2000, 88(2):1193-1195

    45. [45]

      [45] Abdi F F, Krol R V D. J. Phys. Chem. C, 2012,116(17): 9398-9404

    46. [46]

      [46] Christesen J D, Zhang X, Pinion C W, et al. Nano Lett., 2012,12(11):6024-6029

    47. [47]

      [47] Warren E L, McKone J R, Atwater H A, et al. Energ Environ. Sci., 2012,5(11):9653-9661

    48. [48]

      [48] Nozik A J. Annu. Rev. Phys. Chem., 1978,29:189-222

    49. [49]

      [49] Lopes T, Andrade L, Ribeiro H A, et al. Int. J. Hydrogen Energ, 2010,35(20):11601-11608

  • 加载中
    1. [1]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    2. [2]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    3. [3]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    4. [4]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    5. [5]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    6. [6]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    7. [7]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    8. [8]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    9. [9]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    10. [10]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    11. [11]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    12. [12]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    13. [13]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    14. [14]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    15. [15]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    16. [16]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    17. [17]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    18. [18]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    19. [19]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    20. [20]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

Metrics
  • PDF Downloads(0)
  • Abstract views(278)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return