Citation: WANG Yan-En, CAO Shuang, LIU Shu-Jing, FENG Tao, LIU Ning, TANG Ya-Wen, LU Tian-Hong. Carbon Supported Alloy Pd-Fe Catalyst: Preperation and Electrocatalytic Activity for Oxygen Reduction[J]. Chinese Journal of Inorganic Chemistry, ;2015, (1): 23-28. doi: 10.11862/CJIC.2015.024 shu

Carbon Supported Alloy Pd-Fe Catalyst: Preperation and Electrocatalytic Activity for Oxygen Reduction

  • Corresponding author: CAO Shuang, 
  • Received Date: 12 May 2014
    Available Online: 17 October 2014

    Fund Project: 国家自然科学基金项目(No.21073094,21273116,61171015) (No.21073094,21273116,61171015)江苏高校优势学科建设工程(No.10KJB150007)资助项目 (No.10KJB150007)

  • The Pd-Fe/C catalyst was prepared by the complexing reduction method using NH4Cl as the complex agent at the low temperature. The high alloy Pd-Fe/C catalyst Pd and Fe could be prepared at low temperature due to the complex formation by NH4Cl and Pd, which leads to a negative shift for the reduction potential of PdCl2, making the reduction potential of PdCl2 closer to that of FeCl3. The XPS results show that the alloying of Pd with Fe could affect the binding energies of Pd and increase the content of Pd0 in the catalyst. Thus, the electrocatalytic activity of the Pd-Fe/C catalyst obtained for the oxygen reduction is higher than that of the Pd/C catalyst prepared with the same method. Furthermore, this Pd-Fe/C catalyst has no electrocatalytic activity for the methanol oxidation.
  • 加载中
    1. [1]

      [1] Appleby A J, Lloyd A C, Dyer C K. Sci. Am., 1999,281(1): 72-77

    2. [2]

      [2] Zhang L, Zhang J J, Wilkinson D P, et al. J. Power Sources, 2006,156(2):171-182

    3. [3]

      [3] Gasteiger H A, Kocha S S, Sompalli B, et al. Appl. Catal. B: Environ., 2005,56(1-2):9-35

    4. [4]

      [4] Demirci U B. J. Power Sources, 2007,173(1):11-18

    5. [5]

      [5] Wang B. J. Power Sources, 2005,152(1):1-15

    6. [6]

      [6] LI Xu-Guang(李旭光), XING Wei(邢巍), LU Tian-Hong(陆 天虹), et al. Chem. J. Chinese Universities(高等学校化学学 报), 2003,7(24):1246-1250

    7. [7]

      [7] Shao M H, Sasaki K, Adzic R R. J. Am. Chem. Soc., 2006, 128(11):3526-3527

    8. [8]

      [8] Song S Q, Wang Y, Tsiakaras P, et al. Appl. Catal. B: Environ., 2008,78(3/4):381-387

    9. [9]

      [9] Jin Y X, Ma C N, Shi M Q, et al. Int. J. Electrochem. Sci., 2012,7(4):3399-3408

    10. [10]

      [10] Wang H, Ji S, Wang W, et al. Int. J. Electrochem. Sci., 2012,7(4):3390-3398

    11. [11]

      [11] Trinh Q T, Yang J H, Lee J Y, et al. J. Catal., 2012,291:26-35

    12. [12]

      [12] Pires F I, Villullas H M. Int. J. Hydrogen Energy, 2012,37 (22):17052-17059

    13. [13]

      [13] Li A Z, Zhao X, Hou Y N, et al. Appl. Catal. B: Environ., 2012,111:628-635

    14. [14]

      [14] Zhang Z Y, More K L, Sun K, et al. Chem. Mater., 2011,23 (6):1570-1577

    15. [15]

      [15] Yin S B, Cai M, Wang C X, et al. Energy Environ. Sci., 2011,4(2):558-563

    16. [16]

      [16] Neergat M, Gunasekar V, Rahul R. J. Electroanal. Chem., 2011,658(1/2):25-32

    17. [17]

      [17] Alexeyeva N, Sarapuu A, Tammeveski K, et al. Electrochim. Acta, 2011,56(19):6702-6708

    18. [18]

      [18] Yang J H, Zhou W J, Cheng C H, et al. Appl. Mat. Interfaces, 2010,2(1):119-126

    19. [19]

      [19] Wang W, Wang R F, Ji S, et al. J. Power Sources, 2010,195 (11):3498-3503

    20. [20]

      [20] Tang Y W, Cao S, Chen Y, et al. Appl. Surf. Sci., 2010,256 (13):4196-4200

    21. [21]

      [21] Yeh Y C, Chen H M, Liu R S, et al. Chem. Mater., 2009,21 (17):4030-4036

    22. [22]

      [22] Tarasevich M R, Zhutaeva G V, Bogdanovskaya V A, et al. Electrochim. Acta, 2007,52(15):5108-5118

    23. [23]

      [23] Xu J, Lü X S, Li J D, et al. J. Hazard. Mater., 2012,225:36-45

    24. [24]

      [24] Pan Y, Zhang F, Wu K, et al. Int. J. Hydrogen Energy, 2012,37(4):2993-3000

    25. [25]

      [25] Wang C, Markovic N M, Stamenkovic V R. ACS Catal., 2012,2(5):891-898

    26. [26]

      [26] Vondrova M, Burgess C M, Bocarsly A B. Chem. Mater., 2007,19(9):2203-2212

    27. [27]

      [27] Wang R, Liao S, Fu Z, et al. Electrochem. Commun., 2008, 10(4):523-526

    28. [28]

      [28] Li W Z, Haldar P. Electrochem. Commun., 2009,11(6):1195-1198

    29. [29]

      [29] Radmilovic V, Gasteiger H A, Ross P N. J. Catal., 1995, 154(1):98-106

    30. [30]

      [30] Antolini E, Cardellini F. J. Alloys Compd., 2001,315(1/2): 118-122

    31. [31]

      [31] Zhang L, Lee K, Zhang J. Electrochim. Acta, 2007,52(9): 3088-3094

    32. [32]

      [32] Wang W, Zheng D, Du C, et al. J. Power Sources, 2007,167 (2):243-249

    33. [33]

      [33] Tang Y, Zhang L, Wang Y, et al. J. Power Sources, 2006, 162(1):124-131

    34. [34]

      [34] Tominaka S, Mommab T, Osaka T. Electrochim. Acta, 2008, 53(14):4679-4686

    35. [35]

      [35] Dumbuya K, Denecke R, Steinruck H P. Appl. Catal. A: Gen., 2008,348(2):209-213

    36. [36]

      [36] Zhang L, Tang Y, Bao J, et al. J. Power Sources, 2006,162 (1):177-179

    37. [37]

      [37] Persson K, Ersson A, Jansson K, et al. J. Catal., 2005,231 (1):139-150

  • 加载中
    1. [1]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    2. [2]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    3. [3]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    4. [4]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    5. [5]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

    6. [6]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    7. [7]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    8. [8]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    9. [9]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    10. [10]

      Shiqian WEIXinyu TIANHong LIUMaoxia CHENFan TANGQiang FANWeifeng FANYu HU . Oxygen reduction reaction/oxygen evolution reaction catalytic performances of different active sites on nitrogen-doped graphene loaded with iron single atoms. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1776-1788. doi: 10.11862/CJIC.20250102

    11. [11]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    12. [12]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    13. [13]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    14. [14]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    15. [15]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    16. [16]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    17. [17]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    18. [18]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    19. [19]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    20. [20]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

Metrics
  • PDF Downloads(0)
  • Abstract views(507)
  • HTML views(74)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return