Citation: WANG Yan-En, CAO Shuang, LIU Shu-Jing, FENG Tao, LIU Ning, TANG Ya-Wen, LU Tian-Hong. Carbon Supported Alloy Pd-Fe Catalyst: Preperation and Electrocatalytic Activity for Oxygen Reduction[J]. Chinese Journal of Inorganic Chemistry, ;2015, (1): 23-28. doi: 10.11862/CJIC.2015.024 shu

Carbon Supported Alloy Pd-Fe Catalyst: Preperation and Electrocatalytic Activity for Oxygen Reduction

  • Corresponding author: CAO Shuang, 
  • Received Date: 12 May 2014
    Available Online: 17 October 2014

    Fund Project: 国家自然科学基金项目(No.21073094,21273116,61171015) (No.21073094,21273116,61171015)江苏高校优势学科建设工程(No.10KJB150007)资助项目 (No.10KJB150007)

  • The Pd-Fe/C catalyst was prepared by the complexing reduction method using NH4Cl as the complex agent at the low temperature. The high alloy Pd-Fe/C catalyst Pd and Fe could be prepared at low temperature due to the complex formation by NH4Cl and Pd, which leads to a negative shift for the reduction potential of PdCl2, making the reduction potential of PdCl2 closer to that of FeCl3. The XPS results show that the alloying of Pd with Fe could affect the binding energies of Pd and increase the content of Pd0 in the catalyst. Thus, the electrocatalytic activity of the Pd-Fe/C catalyst obtained for the oxygen reduction is higher than that of the Pd/C catalyst prepared with the same method. Furthermore, this Pd-Fe/C catalyst has no electrocatalytic activity for the methanol oxidation.
  • 加载中
    1. [1]

      [1] Appleby A J, Lloyd A C, Dyer C K. Sci. Am., 1999,281(1): 72-77

    2. [2]

      [2] Zhang L, Zhang J J, Wilkinson D P, et al. J. Power Sources, 2006,156(2):171-182

    3. [3]

      [3] Gasteiger H A, Kocha S S, Sompalli B, et al. Appl. Catal. B: Environ., 2005,56(1-2):9-35

    4. [4]

      [4] Demirci U B. J. Power Sources, 2007,173(1):11-18

    5. [5]

      [5] Wang B. J. Power Sources, 2005,152(1):1-15

    6. [6]

      [6] LI Xu-Guang(李旭光), XING Wei(邢巍), LU Tian-Hong(陆 天虹), et al. Chem. J. Chinese Universities(高等学校化学学 报), 2003,7(24):1246-1250

    7. [7]

      [7] Shao M H, Sasaki K, Adzic R R. J. Am. Chem. Soc., 2006, 128(11):3526-3527

    8. [8]

      [8] Song S Q, Wang Y, Tsiakaras P, et al. Appl. Catal. B: Environ., 2008,78(3/4):381-387

    9. [9]

      [9] Jin Y X, Ma C N, Shi M Q, et al. Int. J. Electrochem. Sci., 2012,7(4):3399-3408

    10. [10]

      [10] Wang H, Ji S, Wang W, et al. Int. J. Electrochem. Sci., 2012,7(4):3390-3398

    11. [11]

      [11] Trinh Q T, Yang J H, Lee J Y, et al. J. Catal., 2012,291:26-35

    12. [12]

      [12] Pires F I, Villullas H M. Int. J. Hydrogen Energy, 2012,37 (22):17052-17059

    13. [13]

      [13] Li A Z, Zhao X, Hou Y N, et al. Appl. Catal. B: Environ., 2012,111:628-635

    14. [14]

      [14] Zhang Z Y, More K L, Sun K, et al. Chem. Mater., 2011,23 (6):1570-1577

    15. [15]

      [15] Yin S B, Cai M, Wang C X, et al. Energy Environ. Sci., 2011,4(2):558-563

    16. [16]

      [16] Neergat M, Gunasekar V, Rahul R. J. Electroanal. Chem., 2011,658(1/2):25-32

    17. [17]

      [17] Alexeyeva N, Sarapuu A, Tammeveski K, et al. Electrochim. Acta, 2011,56(19):6702-6708

    18. [18]

      [18] Yang J H, Zhou W J, Cheng C H, et al. Appl. Mat. Interfaces, 2010,2(1):119-126

    19. [19]

      [19] Wang W, Wang R F, Ji S, et al. J. Power Sources, 2010,195 (11):3498-3503

    20. [20]

      [20] Tang Y W, Cao S, Chen Y, et al. Appl. Surf. Sci., 2010,256 (13):4196-4200

    21. [21]

      [21] Yeh Y C, Chen H M, Liu R S, et al. Chem. Mater., 2009,21 (17):4030-4036

    22. [22]

      [22] Tarasevich M R, Zhutaeva G V, Bogdanovskaya V A, et al. Electrochim. Acta, 2007,52(15):5108-5118

    23. [23]

      [23] Xu J, Lü X S, Li J D, et al. J. Hazard. Mater., 2012,225:36-45

    24. [24]

      [24] Pan Y, Zhang F, Wu K, et al. Int. J. Hydrogen Energy, 2012,37(4):2993-3000

    25. [25]

      [25] Wang C, Markovic N M, Stamenkovic V R. ACS Catal., 2012,2(5):891-898

    26. [26]

      [26] Vondrova M, Burgess C M, Bocarsly A B. Chem. Mater., 2007,19(9):2203-2212

    27. [27]

      [27] Wang R, Liao S, Fu Z, et al. Electrochem. Commun., 2008, 10(4):523-526

    28. [28]

      [28] Li W Z, Haldar P. Electrochem. Commun., 2009,11(6):1195-1198

    29. [29]

      [29] Radmilovic V, Gasteiger H A, Ross P N. J. Catal., 1995, 154(1):98-106

    30. [30]

      [30] Antolini E, Cardellini F. J. Alloys Compd., 2001,315(1/2): 118-122

    31. [31]

      [31] Zhang L, Lee K, Zhang J. Electrochim. Acta, 2007,52(9): 3088-3094

    32. [32]

      [32] Wang W, Zheng D, Du C, et al. J. Power Sources, 2007,167 (2):243-249

    33. [33]

      [33] Tang Y, Zhang L, Wang Y, et al. J. Power Sources, 2006, 162(1):124-131

    34. [34]

      [34] Tominaka S, Mommab T, Osaka T. Electrochim. Acta, 2008, 53(14):4679-4686

    35. [35]

      [35] Dumbuya K, Denecke R, Steinruck H P. Appl. Catal. A: Gen., 2008,348(2):209-213

    36. [36]

      [36] Zhang L, Tang Y, Bao J, et al. J. Power Sources, 2006,162 (1):177-179

    37. [37]

      [37] Persson K, Ersson A, Jansson K, et al. J. Catal., 2005,231 (1):139-150

  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    3. [3]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    4. [4]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    5. [5]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    6. [6]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    7. [7]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    8. [8]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    9. [9]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    10. [10]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    11. [11]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    12. [12]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    13. [13]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    14. [14]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    15. [15]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    16. [16]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    17. [17]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    18. [18]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    19. [19]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    20. [20]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

Metrics
  • PDF Downloads(0)
  • Abstract views(332)
  • HTML views(51)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return