Citation: LI Zhi-Xi, HU Ming, LIU Chao, YANG Xiao-Liang. Structural Characterization and Artificial Nuclease Activity of Transition Metal Complexes of Cyclam Derivatives[J]. Chinese Journal of Inorganic Chemistry, ;2015, (1): 127-132. doi: 10.11862/CJIC.2015.023 shu

Structural Characterization and Artificial Nuclease Activity of Transition Metal Complexes of Cyclam Derivatives

  • Corresponding author: YANG Xiao-Liang, 
  • Received Date: 11 August 2014
    Available Online: 24 October 2014

    Fund Project: 国家自然科学基金(No.21131003)资助项目. (No.21131003)

  • Acyclam-based ligand: tetratert-butyl ((4,11-dimethyl-1,4,8,11-tetraazacyclotetradecane-1,8-diyl)bis (propane-3,2,1-triyl)) tetracarbamatev (L1), and its metal complexes [Zn(L1)Cl2] (1), [Ni(L1)Cl2] (2) and [Cu(L1)Cl2] (3) were designed and synthesized. L1 has a C2 symmetrical structure and the 1H chemical shift of the same carbon was different because of the influence of cyclam ring. The metal binding site of the L1 was confirmed by 2D [1H, 15N] HSQC by comparing the chemical shift of N of the branched chains of the ligand that of with the corresponding metal complex. The co-existence of two configuration was characterized by 13C VT NMR combined with 2D [1H, 15N] HSQC NMR and trans-Ⅲ was confirmed to be the main configuration for complex 1. The cleavage activity of the ligand L1 and the complexes 1~3 was investigated in detail under physiological conditions. Agarose gel electrophoresis experiments showed that the complex 3 possesses interesting nuclease activity in the present of ascorbate; No matter the hydrolysis or oxidation, the ligand L1 and complex 1, and 2 were negative to DNA at the experimental conditions.
  • 加载中
    1. [1]

      [1] Hunter T M, Simpson D P, Smith A M, et al. Chem. Eur. J., 2007,13:40-50

    2. [2]

      [2] Liang F, Wan S, Xiong X, et al. Curr. Med. Chem., 2006,13: 711-727

    3. [3]

      [3] Ross A, Choi J H, Hunter T M, et al. Dalton Trans., 2012, 41:6408-6418

    4. [4]

      [4] Canaple L, Husken, J H, et al. Bioconjugate Chem., 2002, 13:94-951

    5. [5]

      [5] Korupoju S R, Mangayarkarasi N, Zacharias P S, et al. Inorg. Chem., 2002,41:4099-4101

    6. [6]

      [6] Xia C Q, Jiang N, Zhang J, et al. Bioorg. Med. Chem., 2006, 14:5756-5764

    7. [7]

      [7] Zhang Q, Xiang Y, Liang D W, et al. Bioorg. Med. Chem. Lett., 2012,22:1814-1817

    8. [8]

      [8] Li C, Zhao F F, Huang Y N, et al. Bioconjugate Chem., 2012, 23:1832-1837

    9. [9]

      [9] Joyner J C, Reichfield J, Cowan J A. J. Am. Chem. Soc., 2011,133:15613-15626

    10. [10]

      [10] Sheng X, Guo X, Lu X M, et al. Bioconjugate Chem., 2008, 19:490-498

    11. [11]

      [11] Ramalingam K, Raju N, Nanjappan P, et al. Tetrahedron, 1995,51:2875-2894

    12. [12]

      [12] Kobelev S M, Averin A D, Buryak A K, et al. Hetercycles, 2011,82:1447-1476

    13. [13]

      [13] Yu M F, Price J R, Jensen P, et al. Inorg. Chem., 2011,50: 12823-12835

    14. [14]

      [14] Stephen J P, Sadler P J. Chem. Commun., 2004:306-307

    15. [15]

      [15] Miyoshi T, Hayashi S, Imashiro F, et al. Macromolecules, 2002,35:2624-2632

    16. [16]

      [16] Liang X Y, Weishaupl M, Parkinson J A, et al. Chem. Eur. J., 2003,9:4709-4717

    17. [17]

      [17] (a)Molphy Z, Prisecaru A, Slator C, et al. Inorg. Chem., 2014,53:5392-5404 (b)Zhou W, Wang X Y, Hu M, et al. Chem. Sci., 2014,5: 2761-2770

  • 加载中
    1. [1]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    2. [2]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    3. [3]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    4. [4]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    5. [5]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    6. [6]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    7. [7]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    8. [8]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    9. [9]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    10. [10]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    11. [11]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    12. [12]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    13. [13]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    14. [14]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    15. [15]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    16. [16]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    17. [17]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    18. [18]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    19. [19]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    20. [20]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

Metrics
  • PDF Downloads(0)
  • Abstract views(230)
  • HTML views(33)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return