Citation: ZHANG Jun-Min, TAN Zhi-Long, WANG Chuan-Jun, BI Jun, YI Wei, SHENG Yue, GUAN Wei-Ming, WEN Ming. Effect of Carbon Support Pretreatment on Structure and Performance of Pt/C Electrocatalysts[J]. Chinese Journal of Inorganic Chemistry, ;2015, (1): 140-146. doi: 10.11862/CJIC.2015.022 shu

Effect of Carbon Support Pretreatment on Structure and Performance of Pt/C Electrocatalysts

  • Corresponding author: WEN Ming, 
  • Received Date: 12 August 2014
    Available Online: 20 October 2014

    Fund Project: 国家地区科学基金(No.51262015) (No.51262015)云南省基金(No.2011FB125)资助项目. (No.2011FB125)

  • Pt/C catalysts were prepared using a new modified polyol method with different heat treatment temperatures of Vulcan XC-72 carbon support. The oxygen containing functional group and the specific surface area of carbon black were characterized by pH meter and physical adsorption instrument. The composition, morphology and the electrochemical properties of the Pt/C catalyst were characterized by coupled plasma atomic emission spectroscopy, Transmission electron microscopy, X-ray diffraction and cyclic voltammograms, respectively. The results indicate that the Pt/C catalyst with 400 ℃ heat treatment for carbon black has an electrochemical specific surface area of 83 m2·g-1, and the quality of the current density of 49.03 A·g-1, while the corresponding parameters for imported commercial JM 20% Pt/C catalyst are 77 m2·g-1 and 11.13 A·g-1, respectively. The Pt loading in the present work is decreased by 3wt%~4wt% and the electric catalytic activity for the catalyst obtained in this work is better than that of commercial JM 20% Pt/C catalyst.
  • 加载中
    1. [1]

      [1] YI Bao-Lian(衣宝廉). Fuel Cell Efficiency, Environmental Friendly Generator(燃料电池-高效,环境友好的发电方式). Beijing: Chemical Industry Press, 2000:302

    2. [2]

      [2] YI Bao-Lian(衣宝廉). Fuel Cell: Principle, Technology, Application(燃料电池-原理·技术·应用). Beijing: Chemical Industry Press, 2003:289

    3. [3]

      [3] Lee J Y, Yun Y H, Park S W, et al. Microporous Mesoporous Mater., 2010,35(1):1-7

    4. [4]

      [4] Zhou W, Zhou Z, Song S, et al. Appl. Catal. B, 2003,46(3): 273-285

    5. [5]

      [5] Jung Ju Hae , Park Hyang Jin, Kim Junbom, et al. J. Power Sources, 2014,248(2):1156-1162

    6. [6]

      [6] Shao Y Y, Yin G P, Wang J J, et al. J. Power Sources, 2006, 161(3):47-53

    7. [7]

      [7] Gasteiger H A, Kocha S S, et al. Appl. Catal. B: Environ., 2005,56(4):9-35

    8. [8]

      [8] Liang D, Gao J, Wang J H, et al. Catal. Commun., 2009,10 (12):1586-1590

    9. [9]

      [9] Liang D, Gao J, Sun H, et al. Appl. Catal. B: Environ., 2011, 106(3):423-432

    10. [10]

      [10] ZHANG Jun-Min(张俊敏), ZHU Fang-Fang(朱芳芳), LIU Wei-Ping(刘伟平), et al. Rare Metal Mater. Eng.(稀有金属 材料与工程), 2013,42(9):1941-1944

    11. [11]

      [11] Sheng E, Bradley R H, Freakley P K. J. Mater. Sci., 1996, 30(21):5651-5655

    12. [12]

      [12] Park S J, Kim J S. J. Adhes. Sci. Technol., 2001,15(12): 1443-1452

    13. [13]

      [13] WANG Dao-Hong(王道宏), ZHANG Ji-Yan(张继炎), WANG Ri-Jie(王日杰),et al. J. Tianjin University(天津大学学报), 2004,37(1):10-14

    14. [14]

      [14] Kinoshita K. Carbon: Electrochemical and Physicochemical Properties. New York: Wiley Chichester, 1988:385

    15. [15]

      [15] ZHOU Zhi-Min(周志敏), SHAO Zhi-Gang(邵志刚), YI Bao- Lian(衣宝廉). Battery(电池), 2009,39(4):177-180

    16. [16]

      [16] ZENG Li-Zen(曾丽珍), LI Wei(李伟), LI Wei-Shan(李伟善). The 26th Annual Meeting of The New Energy and Chemical Breakout Anthology, Chinese Chemical Society(中国化学会 第26届学术年会新能源与能源化学分会场论文集). Tianjin, 2008:567-572

    17. [17]

      [17] ZHOU Hong-Ru(周红茹), TANG Hou-Wen(唐厚闻), CHEN Xue-Song(陈雪松), et al. Shanghai Auto(上海汽车), 2013, 10(7):6-8

  • 加载中
    1. [1]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    2. [2]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    3. [3]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    4. [4]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    5. [5]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    6. [6]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    7. [7]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    8. [8]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    9. [9]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    10. [10]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    11. [11]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    12. [12]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    13. [13]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    14. [14]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    15. [15]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    16. [16]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    17. [17]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    18. [18]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    19. [19]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    20. [20]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

Metrics
  • PDF Downloads(0)
  • Abstract views(395)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return