Citation: HU Guo-Rong, LU Wei, LIANG Long-Wei, CAO Yan-Bing, PENG Zhong-Dong, DU Ke. Ni, Mn-Codoped High-Voltage LiCoO2 Cathode Material for Lithium Ion Batteries[J]. Chinese Journal of Inorganic Chemistry, ;2015, (1): 159-165. doi: 10.11862/CJIC.2015.020 shu

Ni, Mn-Codoped High-Voltage LiCoO2 Cathode Material for Lithium Ion Batteries

  • Corresponding author: DU Ke, 
  • Received Date: 29 August 2014
    Available Online: 23 October 2014

    Fund Project: 国家自然科学基金(No)资助项目. (No)

  • The precursor Co0.9Ni0.05Mn0.05(OH)2 of the high-voltage cathode material for lithium ion batteries was synthesized by hydroxide co-precipitation method using the transition metal sulphate as the raw material, NaOH and NH3·H2Oas the precipitate agents. Then the corresponding Li(Co0.9Ni0.05Mn0.05)O2 was obtained when mixing the precursor with Li2CO3 by high solid method. Crystal structure, morphology and electrochemical performance of the sample were investigated by XRD, SEM, Cyclic voltammetry (C-V) method, electrochemical impedance spectroscopy (EIS) test and charge-discharge test. Mixed doping Ni-Mn material Li(Co0.9Ni0.05Mn0.05)O2 shows better electrochemical performance compared to LiCoO2 as confirmed by the results of C-V, XRD and EIS. When the co-doped product Li(Co0.9Ni0.05Mn0.05)O2 was charged to 4.4 and 4.5 V, the initial discharge capacity is 162.5 mAh·g-1 and 185 mAh·g-1 at 0.5Crate, respectively. After cycling for 100 times, the retention of discharge capacity was 94.4% and 93.7%, respectively.
  • 加载中
    1. [1]

      [1] Li H, Wang Z X, Chen L Q, et al. Adv. Mater., 2009,21(45): 4593-4607

    2. [2]

      [2] Goodenough J B, Kim Y. Chem. Mater., 2010,22(3):587-603

    3. [3]

      [3] Shaju K M, Rao G V S, Chowdari B V R. Electrochim. Acta, 2002,48(2):145-151

    4. [4]

      [4] Fan J, Fedkiw P S. J. Power Sources, 1998,72(2):165-173

    5. [5]

      [5] Manthiram A, Kim J. Chem. Mater., 1998,10(10):2895-2909

    6. [6]

      [6] Chen Z H, Dahn J R. Electrochem. Solid-State Lett., 2003,6: A221-A224

    7. [7]

      [7] Kim G H, Myung S T, Bang H J, et al. Electrochem. Solid- State Lett., 2004,7(12):A477-A480

    8. [8]

      [8] Cho J, Kim G. Electrochem. Solid-State Lett., 1999,2:253-255

    9. [9]

      [9] Jung H G, Gopal N V, Prakash J, Kim D W, et al. Electrochim. Acta, 2012,68:153-157

    10. [10]

      [10] Zeng D L, Cabana J, breger J, Yoon W S, et al. Chem. Mater., 2007,19:6277-6289

    11. [11]

      [11] Saadoune I, Labrini M, Yahya M, et al. Electrochim. Acta, 2010,55:5180-5185

    12. [12]

      [12] Bentaleb Y, Saadoune I, Maher K, et al. J. Power Sources, 2010,195:1510-1515

    13. [13]

      [13] Ben Kamel K, Amdouni N, Abdel-Ghany A, et al. Ionics, 2008,14:89-97

    14. [14]

      [14] Hwang B J, Tsai Y W, Carlier D, et al. Chem. Mater., 2003, 15:3676-3682

    15. [15]

      [15] Yoon W S, Grey C P, Balasubramanian M, et al. Electro- chem. Solid-State Lett., 2004,7:A53-A55

    16. [16]

      [16] Myung S T, Ogata A, Lee K S, et al. Electrochem. Soc., 2008,155:A374

    17. [17]

      [17] YANG Ping (杨平). Thesis for the Doctorate of Central South University(中南大学博士论文). 2009.

    18. [18]

      [18] Thackeray M M, Johnson C S, Vaughey J T, et al. J. Mater. Chem., 2005,15(23):2257-2267

    19. [19]

      [19] Xia H, Lu L, Ceder G. J. Alloys Compd., 2006,417(1):304- 310

    20. [20]

      [20] Du K, Huang J L, Cao Y B, et al. J. Alloys Compd., 2013, 574:377-382

    21. [21]

      [21] Levi M D, Gamolsky K, Aurbach D, et al. Electrochim. Acta, 2000,45:1781-1789

    22. [22]

      [22] Li L J, Li X H, Wang Z X, et al. Powder Technol., 2011, 206:353-357

    23. [23]

      [23] Shi S J, Tu J P, Tang Y Y, et al. J. Power Sources, 2013, 225:338-341

    24. [24]

      [24] SHI Xiu-Juan(施秀娟). Thesis for the Doctorate of Central South University(中南大学博论文). 2006.

  • 加载中
    1. [1]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    2. [2]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    3. [3]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    4. [4]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    5. [5]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    6. [6]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    7. [7]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    8. [8]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    9. [9]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    10. [10]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    11. [11]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    12. [12]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    13. [13]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    14. [14]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    15. [15]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    16. [16]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    17. [17]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    18. [18]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    19. [19]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    20. [20]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

Metrics
  • PDF Downloads(0)
  • Abstract views(413)
  • HTML views(74)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return