Citation: LIANG Jian, ZHANG Cai-Xia, DONG Hai-Liang, HE Xia, SHEN Yan-Qiang, XU Bing-She. Ag/ZnO/ZnSe Heteronanostructure: Synthesis and Photocatalytic Properties with Visible Light Irradiation[J]. Chinese Journal of Inorganic Chemistry, ;2015, (2): 260-266. doi: 10.11862/CJIC.2015.016 shu

Ag/ZnO/ZnSe Heteronanostructure: Synthesis and Photocatalytic Properties with Visible Light Irradiation

  • Corresponding author: LIANG Jian, 
  • Received Date: 15 July 2014
    Available Online: 27 October 2014

    Fund Project: 国家自然科学基金(No.51002102) (No.51002102)山西省自然科学基金(No.2012011046-7)资助项目 (No.2012011046-7)

  • Ag/ZnO/ZnSe heterostructure nanocatalysts were successfully synthesized via twice immersion method by use of as-prepared Ag nanowire. The structure and morphology of Ag/ZnO/ZnSe heterostructure are investigated by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDS) field emission transmission electron microscopy (FETEM). It is proved that Ag/ZnO/ZnSe heterostructure was consisted with vermicular Ag/ZnOheterostructure coated by ZnSe nanoparticles. Compared with pure Ag nanowire, pure ZnOnanosphere and Ag/ZnOheterostructure, the results showed that the photocatalytic activity of the Ag/ZnO/ZnSe heterostructure was higher than other samples. The enhanced photocatalytic activity could be attributed to the formation of heterostructure, which might improve the separation of photogenerated electron-hole pairs, and decrease recombination probability.
  • 加载中
    1. [1]

      [1] Kim Y S, Kang S H. Nanotechnology, 2011,22(27):275707

    2. [2]

      [2] Chung Y A, Chang Y C, Lu M Y, et al. J. Electrochem. Soc., 2009,156(5):F75-F79

    3. [3]

      [3] WANG Xin-Juan(王新娟), XIAO Yang(肖洋), XU Fei(徐斐), et al. Chinese J. Inorg. Chem.(无机化学学报), 2014,30(8): 1821-1826

    4. [4]

      [4] Bae J, Han J B, Zhang X M. J. Phys. Chem. C, 2009,113: 10379-10383

    5. [5]

      [5] Ye C H, Bando Y, Shen G Z, et al. J. Phys. Chem. B, 2006, 110:15146-15151

    6. [6]

      [6] Xu X L, Duan X, Yi Z G, et al. Catal. Commun., 2010,12(3): 169-172

    7. [7]

      [7] Luo Q P, Lei B X, Yu X Y, et al. J. Mater. Chem., 2011,21 (24):8709-8714

    8. [8]

      [8] Zhang Q F, Dandeneau C S, Zhou X Y, et al. Adv. Mater., 2009,21(41):4087-4108

    9. [9]

      [9] Wang J W, Mao B D, Gole G L, et al. Nanoscale, 2010,2: 2257-2261

    10. [10]

      [10] Song C X, Lin Y S, Wang D B, et al. Mater. Lett., 2010,64: 1595-1597

    11. [11]

      [11] Wang G Y, Zhang W X, Lian H L, et al. Appl. Catal. A: General, 2003,239(1):1-8

    12. [12]

      [12] Gu C D, Cheng C, Huang H Y, et al. Cryst. Growth Des., 2009,9(7):3278-3285

    13. [13]

      [13] Wu W, Zhang S F, Xiao X H, et al. ACS Appl. Mater. Interfaces, 2012,4:3602-3609

    14. [14]

      [14] Hameed A, Gombac V, Montini T, et al. Chem. Phys. Lett., 2009,472(4/5/6):212-216

    15. [15]

      [15] Shen F Y, Que W X, He Y C, et al. ACS Appl. Mater. Interfaces, 2012,4:4087-4092

    16. [16]

      [16] Wang Z Y, Huang B B, Dai Y, et al. J. Phys. Chem. C, 2009,113:4612-4617

    17. [17]

      [17] Khanchandani S, Kundu S, Patra A, et al. J. Phys. Chem. C, 2012,116:23653-23662

    18. [18]

      [18] Goswami B, Pal S, Ghosh C, et al. J. Phys. Chem. C, 2009, 113:6439-6443

    19. [19]

      [19] Zapien J A, Liu Y K, Shan Y Y, et al. Appl. Phys. Lett., 2007,90(21):213114-213117

    20. [20]

      [20] Wang K, Chen J, Zhou W, et al. Adv. Mater., 2008,20:3248-3253

    21. [21]

      [21] Chen L L, Zhang W X, Feng C, et al. Ind. Eng. Chem. Res., 2012,51(11): 4208-4214

    22. [22]

      [22] Hoffmann M R, Martin S T, Choi W, et al. Chem. Rev., 1995,95:69-96

  • 加载中
    1. [1]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    2. [2]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    3. [3]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    4. [4]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    5. [5]

      Jie RenHao ZongYaqun HanTianyi LiuShufen ZhangQiang XuSuli Wu . Visual identification of silver ornament by the structural color based on Mie scattering of ZnO spheres. Chinese Chemical Letters, 2024, 35(9): 109350-. doi: 10.1016/j.cclet.2023.109350

    6. [6]

      Jun-Jie FangZheng LiuYun-Peng XieXing Lu . Superatomic Ag58 nanoclusters incorporating a [MS4@Ag12]2+ (M = Mo or W) kernel show aggregation-induced emission. Chinese Chemical Letters, 2024, 35(10): 109345-. doi: 10.1016/j.cclet.2023.109345

    7. [7]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    8. [8]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    9. [9]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    10. [10]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    11. [11]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    12. [12]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    13. [13]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    14. [14]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    15. [15]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    16. [16]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    17. [17]

      Yuan ZhangShenghao GongA.R. Mahammed ShaheerRong CaoTianfu Liu . Plasmon-enhanced photocatalytic oxidative coupling of amines in the air using a delicate Ag nanowire@NH2-UiO-66 core-shell nanostructures. Chinese Chemical Letters, 2024, 35(4): 108587-. doi: 10.1016/j.cclet.2023.108587

    18. [18]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    19. [19]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    20. [20]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

Metrics
  • PDF Downloads(0)
  • Abstract views(115)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return