Citation: LIANG Shao-Wei, ZHONG Wei, ZHAN Cai-Xia, ZHAO Jia, LI Wen-Qiang, YE Ping, WANG Hong-Dan, SHEN Jie, FAN Lu, XIAO Zhi-Yin, LIU Xiao-Ming. Synthesis and Characterization of [FeFe]-Hydrogenase Model Complex Functionalized Polymers Based on Different Content of Alkaline Group[J]. Chinese Journal of Inorganic Chemistry, ;2015, (1): 87-96. doi: 10.11862/CJIC.2015.011 shu

Synthesis and Characterization of [FeFe]-Hydrogenase Model Complex Functionalized Polymers Based on Different Content of Alkaline Group

  • Corresponding author: LIU Xiao-Ming, 
  • Received Date: 8 July 2014
    Available Online: 18 September 2014

    Fund Project: 国家级大学生创新训练计划项目(No.201310354021) (No.201310354021)国家自然科学基金(No.21171073)资助项目 (No.21171073)

  • Co-polymerization of [2Fe2S] model complex [Fe2(μ-SCH2C≡CH)2(CO)6] (A), diazide 2,6-(N3CH2)Py (B, Py=pyridine) and diyne compound (2-PyCH2)N(CH2C≡CH)2 (C, Py=pyridine) led to the formation of six functionalized Polymers Polymer-1~Polymer-6 via "click reaction" by varying the ratio of the three components. These Polymers were characterized by IR spectroscopy, sulfur elemental analysis, thermal gravimetric analysis, scanning electron microscopy and electrochemistry. IR spectroscopic data and electrochemical investigations suggested that diiron hexacarbonyl complex A exists as diiron pentacarbonyl unit in these Polymers. In the co-polymerizing process, increasing the content of monomer C can significantly change the morphologies of these Polymers and improve their solubility in organic solvents and thermal stability. Electrochemistry of these Polymers in acetic acid-DMF indicated that the secondary coordination atmosphere established by introducing alkaline group provided by the monomer C can significantly enhance the catalytic performance of the diiron units in these Polymers.
  • 加载中
    1. [1]

      [1] Baños R, Manzano-Agugliaro F, Montoya F G, et al. Renewable Sustainable Energ Rev., 2011,15(4):1753-1766

    2. [2]

      [2] Adams M W W, Mortenson L E, Chen J S. BBA-Bioenergetics, 1980,594(2/3):105-176

    3. [3]

      [3] Tard C, Pickett C J. Chem. Rev., 2009,109(6):2245-2274

    4. [4]

      [4] Peters J W, Lanzilotta W N, Lemon B J, et al. Science, 1998,282(5395):1853-1858

    5. [5]

      [5] Nicolet Y, Piras C, Legrand P, et al. Struct. Fold. Des., 1999,7(1):13-23

    6. [6]

      [6] Darensbourg M Y, Lyon E J, Smee J J. Coord. Chem. Rev., 2000,206:533-561

    7. [7]

      [7] Best S P. Coord. Chem. Rev., 2005,249(15/16):1536-1554

    8. [8]

      [8] Capon J F, Gloaguen F, Schollhammer P, et al. Coord. Chem. Rev., 2005,249(15/16):1664-1676

    9. [9]

      [9] Liu X M, Ibrahim S K, Tard C, et al. Coord. Chem. Rev., 2005,249(15/16):1641-1652

    10. [10]

      [10] Fontecilla-Camps J C, Volbeda A, Cavazza C, et al. Chem. Rev., 2007,107(10):4273-4303

    11. [11]

      [11] Pilet E, Nicolet Y, Mathevon G, et al. FEBS Lett., 2009, 583:506-511

    12. [12]

      [12] Ginovska-Pangovska B, Ho M H, Linehan J C, et al. BBA-Bioenergetics, 2014,1837(1):131-138

    13. [13]

      [13] Shepard E M, Mus F, Betz J N, et al. Biochemistry, 2014,53 (25):4090-4104

    14. [14]

      [14] Singleton M L, Reibenspies J H, Darensbourg M Y. J. Am. Chem. Soc., 2010,132(26):8870-8871

    15. [15]

      [15] Le Goff A, Artero V, Jousselme B, et al. Science, 2009,326 (5958):1384-1387

    16. [16]

      [16] Ibrahim S, Woi P M, Alias Y, et al. Chem. Commun., 2010, 46(43):8189-8191

    17. [17]

      [17] Ru X, Zeng X, Li Z, et al. J. Polym. Sci., Part A: Polym. Chem., 2010,48(11):2410-2417

    18. [18]

      [18] Zhan C, Wang X, Wei Z, et al. Dalton Trans., 2010,39(46): 11255-11262

    19. [19]

      [19] Wang L J, Xiao Z Y, Ru X, et al. RSC Adv., 2011,1(7): 1211-1219

    20. [20]

      [20] Xu E, Xiao Z, Liu H, et al. RSC Adv., 2012,2(27):10171-10174

    21. [21]

      [21] Li Z, Zeng X, Niu Z, et al. Electrochim. Acta, 2009,54(13): 3638-3644

    22. [22]

      [22] Vincent K A, Parkin A, Armstrong F A. Chem. Rev., 2007,107 (10):4366-4413

    23. [23]

      [23] Roy S, Shinde S, Hamilton G A, et al. Eur. J. Inorg. Chem., 2011(7):1050-1055

    24. [24]

      [24] Xiao Z Y, Xu F F, Long L, et al. J. Organomet. Chem., 2010,695(5):721-729

    25. [25]

      [25] Xu F, Tard C, Wang X, et al. Chem. Commun., 2008,(5): 606-608

    26. [26]

      [26] Capon J F, El Hassnaoui S, Gloaguen F, et al. Organometallics, 2005,24(9):2020-2022

    27. [27]

      [27] Razavet M, Davies S C, Hughes D L, et al. Dalton Trans., 2003(4):586-595

    28. [28]

      [28] Gloaguen F, Lawrence J D, Schmidt M, et al. J. Am. Chem. Soc., 2001,123(50):12518-12527

    29. [29]

      [29] Xiao Z, Wei Z, Long L, et al. Dalton Trans., 2011,40(16): 4291-4299

    30. [30]

      [30] Zeng X H, Li Z M, Xiao Z Y, et al. Electrochem. Commun., 2010,12(3):342-345

    31. [31]

      [31] Surawatanawong P, Tye J W, Darensbourg M Y, et al. Dalton Trans., 2010,39(12):3093-3104

    32. [32]

      [32] Ezzaher S, Capon J F, Dumontet N, et al. J. Electroanal. Chem., 2009,626(1/2):161-170

    33. [33]

      [33] Ezzaher S, Gogoll A, Bruhn C, et al. Chem. Commun., 2010,46(31):5775-5777

  • 加载中
    1. [1]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    2. [2]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    3. [3]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    4. [4]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    5. [5]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    6. [6]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    7. [7]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    8. [8]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    9. [9]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    10. [10]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    11. [11]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    12. [12]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    13. [13]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    14. [14]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    15. [15]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    16. [16]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    17. [17]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    18. [18]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    19. [19]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    20. [20]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

Metrics
  • PDF Downloads(0)
  • Abstract views(196)
  • HTML views(32)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return