Citation: LIANG Shao-Wei, ZHONG Wei, ZHAN Cai-Xia, ZHAO Jia, LI Wen-Qiang, YE Ping, WANG Hong-Dan, SHEN Jie, FAN Lu, XIAO Zhi-Yin, LIU Xiao-Ming. Synthesis and Characterization of [FeFe]-Hydrogenase Model Complex Functionalized Polymers Based on Different Content of Alkaline Group[J]. Chinese Journal of Inorganic Chemistry, ;2015, (1): 87-96. doi: 10.11862/CJIC.2015.011 shu

Synthesis and Characterization of [FeFe]-Hydrogenase Model Complex Functionalized Polymers Based on Different Content of Alkaline Group

  • Corresponding author: LIU Xiao-Ming, 
  • Received Date: 8 July 2014
    Available Online: 18 September 2014

    Fund Project: 国家级大学生创新训练计划项目(No.201310354021) (No.201310354021)国家自然科学基金(No.21171073)资助项目 (No.21171073)

  • Co-polymerization of [2Fe2S] model complex [Fe2(μ-SCH2C≡CH)2(CO)6] (A), diazide 2,6-(N3CH2)Py (B, Py=pyridine) and diyne compound (2-PyCH2)N(CH2C≡CH)2 (C, Py=pyridine) led to the formation of six functionalized Polymers Polymer-1~Polymer-6 via "click reaction" by varying the ratio of the three components. These Polymers were characterized by IR spectroscopy, sulfur elemental analysis, thermal gravimetric analysis, scanning electron microscopy and electrochemistry. IR spectroscopic data and electrochemical investigations suggested that diiron hexacarbonyl complex A exists as diiron pentacarbonyl unit in these Polymers. In the co-polymerizing process, increasing the content of monomer C can significantly change the morphologies of these Polymers and improve their solubility in organic solvents and thermal stability. Electrochemistry of these Polymers in acetic acid-DMF indicated that the secondary coordination atmosphere established by introducing alkaline group provided by the monomer C can significantly enhance the catalytic performance of the diiron units in these Polymers.
  • 加载中
    1. [1]

      [1] Baños R, Manzano-Agugliaro F, Montoya F G, et al. Renewable Sustainable Energ Rev., 2011,15(4):1753-1766

    2. [2]

      [2] Adams M W W, Mortenson L E, Chen J S. BBA-Bioenergetics, 1980,594(2/3):105-176

    3. [3]

      [3] Tard C, Pickett C J. Chem. Rev., 2009,109(6):2245-2274

    4. [4]

      [4] Peters J W, Lanzilotta W N, Lemon B J, et al. Science, 1998,282(5395):1853-1858

    5. [5]

      [5] Nicolet Y, Piras C, Legrand P, et al. Struct. Fold. Des., 1999,7(1):13-23

    6. [6]

      [6] Darensbourg M Y, Lyon E J, Smee J J. Coord. Chem. Rev., 2000,206:533-561

    7. [7]

      [7] Best S P. Coord. Chem. Rev., 2005,249(15/16):1536-1554

    8. [8]

      [8] Capon J F, Gloaguen F, Schollhammer P, et al. Coord. Chem. Rev., 2005,249(15/16):1664-1676

    9. [9]

      [9] Liu X M, Ibrahim S K, Tard C, et al. Coord. Chem. Rev., 2005,249(15/16):1641-1652

    10. [10]

      [10] Fontecilla-Camps J C, Volbeda A, Cavazza C, et al. Chem. Rev., 2007,107(10):4273-4303

    11. [11]

      [11] Pilet E, Nicolet Y, Mathevon G, et al. FEBS Lett., 2009, 583:506-511

    12. [12]

      [12] Ginovska-Pangovska B, Ho M H, Linehan J C, et al. BBA-Bioenergetics, 2014,1837(1):131-138

    13. [13]

      [13] Shepard E M, Mus F, Betz J N, et al. Biochemistry, 2014,53 (25):4090-4104

    14. [14]

      [14] Singleton M L, Reibenspies J H, Darensbourg M Y. J. Am. Chem. Soc., 2010,132(26):8870-8871

    15. [15]

      [15] Le Goff A, Artero V, Jousselme B, et al. Science, 2009,326 (5958):1384-1387

    16. [16]

      [16] Ibrahim S, Woi P M, Alias Y, et al. Chem. Commun., 2010, 46(43):8189-8191

    17. [17]

      [17] Ru X, Zeng X, Li Z, et al. J. Polym. Sci., Part A: Polym. Chem., 2010,48(11):2410-2417

    18. [18]

      [18] Zhan C, Wang X, Wei Z, et al. Dalton Trans., 2010,39(46): 11255-11262

    19. [19]

      [19] Wang L J, Xiao Z Y, Ru X, et al. RSC Adv., 2011,1(7): 1211-1219

    20. [20]

      [20] Xu E, Xiao Z, Liu H, et al. RSC Adv., 2012,2(27):10171-10174

    21. [21]

      [21] Li Z, Zeng X, Niu Z, et al. Electrochim. Acta, 2009,54(13): 3638-3644

    22. [22]

      [22] Vincent K A, Parkin A, Armstrong F A. Chem. Rev., 2007,107 (10):4366-4413

    23. [23]

      [23] Roy S, Shinde S, Hamilton G A, et al. Eur. J. Inorg. Chem., 2011(7):1050-1055

    24. [24]

      [24] Xiao Z Y, Xu F F, Long L, et al. J. Organomet. Chem., 2010,695(5):721-729

    25. [25]

      [25] Xu F, Tard C, Wang X, et al. Chem. Commun., 2008,(5): 606-608

    26. [26]

      [26] Capon J F, El Hassnaoui S, Gloaguen F, et al. Organometallics, 2005,24(9):2020-2022

    27. [27]

      [27] Razavet M, Davies S C, Hughes D L, et al. Dalton Trans., 2003(4):586-595

    28. [28]

      [28] Gloaguen F, Lawrence J D, Schmidt M, et al. J. Am. Chem. Soc., 2001,123(50):12518-12527

    29. [29]

      [29] Xiao Z, Wei Z, Long L, et al. Dalton Trans., 2011,40(16): 4291-4299

    30. [30]

      [30] Zeng X H, Li Z M, Xiao Z Y, et al. Electrochem. Commun., 2010,12(3):342-345

    31. [31]

      [31] Surawatanawong P, Tye J W, Darensbourg M Y, et al. Dalton Trans., 2010,39(12):3093-3104

    32. [32]

      [32] Ezzaher S, Capon J F, Dumontet N, et al. J. Electroanal. Chem., 2009,626(1/2):161-170

    33. [33]

      [33] Ezzaher S, Gogoll A, Bruhn C, et al. Chem. Commun., 2010,46(31):5775-5777

  • 加载中
    1. [1]

      Xiaogang Liu Mengyu Chen Yanyan Li Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007

    2. [2]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    3. [3]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    4. [4]

      Lilong Gao Yuhao Zhai Dongdong Zhang Linjun Huang Kunyan Sui . Exploration of Thiol-Ene Click Polymerization in Polymer Chemistry Experiment Teaching. University Chemistry, 2025, 40(4): 87-93. doi: 10.12461/PKU.DXHX202405143

    5. [5]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    6. [6]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    7. [7]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

    8. [8]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    9. [9]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    10. [10]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    11. [11]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

    12. [12]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    13. [13]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    14. [14]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    15. [15]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

    16. [16]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    17. [17]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    18. [18]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    19. [19]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    20. [20]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

Metrics
  • PDF Downloads(0)
  • Abstract views(376)
  • HTML views(64)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return