Citation: LI Mei SUN, HAN Wei, WANG Shan-Shan, ZHANG Mi-Lin, YAN Yong-De, ZHANG Meng. Electrochemical Preparation of Ho-Ni Intermetallic Compounds in LiCl-KCl Eutectic Melts[J]. Chinese Journal of Inorganic Chemistry, ;2015, (1): 177-182. doi: 10.11862/CJIC.2015.006 shu

Electrochemical Preparation of Ho-Ni Intermetallic Compounds in LiCl-KCl Eutectic Melts

  • Corresponding author: HAN Wei, 
  • Received Date: 30 June 2014
    Available Online: 8 October 2014

    Fund Project: 国家自然科学基金(No.21271054,21173060,51104050) (No.21271054,21173060,51104050)国家自然基金重大研究计划(No.91326113,91226201)以及中央高校研究基金(HEUCF201403001)资助项目. (No.91326113,91226201)以及中央高校研究基金(HEUCF201403001)

  • The electrochemical behavior of Ho(Ⅲ) in LiCl-KCl eutectic melts and the alloying mechanism of Ho-Ni alloys were investigated by cyclic voltammetry, square wave voltammetry and open circuit chronopotentiometry. On an inert Welectrode, the electroreduction of Ho(Ⅲ) proceeds in a one-step process involving three electrons at -2.06 V (vs Ag/AgCl). Compared with the cyclic voltammograms on an inert Welectrode, three reduction peaks are observed which indicates the under-potential deposition of Ho(Ⅲ) on the reactive Ni electrode due to the formation of Ho-Ni intermetallic compounds. Three alloy samples were produced by potentiostatic electrolysis at various potentials and characterized by X-ray diffraction (XRD), scanning electron microscopy and energy dispersive spectrometer (SEM-EDS), respectively. The results confirm the three alloy samples of Ho2Ni17, HoNi5 and HoNi2 intermetallic compounds, respectively.
  • 加载中
    1. [1]

      [1] Yaropolov Y L, Andreenko A S, Nikitin S A, et al. J. Alloys Compd., 2011,509:S830-834

    2. [2]

      [2] Haraguchi T, Kogachi M. Mater. Sci. Eng. A, 2002,329-331: 402-407

    3. [3]

      [3] GUO Xin(郭欣), LI Shu-Cun(李书存), WANG Li(王丽) et al. Chinese J. Inorg. Chem.(无机化学学报), 2014,30(9):2019- 2024

    4. [4]

      [4] Domnguez-Crespo M A, Torres-Huerta A M, Brachetti-Sibaja B, et al. Int. J. Hydrogen Energy, 2011,36:135-151

    5. [5]

      [5] Li P, Li Q Q, Jin T, et al. Mater. Sci. Eng. A, 2014,603:84- 92

    6. [6]

      [6] Konishi H, Nohira T, Ito Y. Electrochim. Acta, 2003,48:563- 568

    7. [7]

      [7] Kobayashi S, Nohira T, Kobayashi K, et al. J. Electrochem. Soc., 2012,159(12):E193-197

    8. [8]

      [8] Kobayashi S, Kobayashi K, Nohira T, et al. J. Electrochem. Soc., 2011,158(12):E142-146

    9. [9]

      [9] Yasuda K, Kobayashi S, Nohira T, et al. Electrochim. Acta, 2013,106:293-300

    10. [10]

      [10] Yasuda K, Kobayashi S, Nohira T, et al. Electrochim. Acta, 2013,92:349-355

    11. [11]

      [11] Chamelot P, Massot L, Hamel C, et al. J. Nucl. Mater., 2007,360:64-74

    12. [12]

      [12] Nohira T, Kambara H, Amezawa K, et al. J. Electrochem. Soc., 2005,152(4):C183-189

    13. [13]

      [13] Iida T, Nohira T, Ito Y, et al. Electrochim. Acta, 2001,46: 2537-2544

    14. [14]

      [14] Iida T, Nohira T, Ito Y, et al. Electrochim. Acta, 2003,48: 1531-1536

    15. [15]

      [15] SU Yu-Zhi(苏育志), YANG Qi-Qin(杨绮琴), LIU Guan-Kun (刘冠昆). J. Rare Earths, 2000,18(1): 34-38

    16. [16]

      [16] Sangster J, Pelton A D. J. Phase Equilib., 1991,12:203

    17. [17]

      [17] Bard A J, Faulkner L R. Electrochemical Methods: Fundamental and Applications. New York: John Wiley & Sons, Inc, 2001:291

    18. [18]

      [18] Castrillejo Y, Fernández P, Bermejo M R, et al. Electrochim. Acta, 2009,54:6212-6222

    19. [19]

      [19] Strycker J D, Westbroek P, Temmerman E. Electrochem. Commun., 2002,4:41-46

    20. [20]

      [20] Konishi H, Nishikiori T, Nohira T. Electrochim. Acta, 2003,48:1403-1408

    21. [21]

      [21] Zhou H Y, Ou X L, Zhong X P. J. Alloys Compd., 1991,117 (1):102-106

  • 加载中
    1. [1]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    2. [2]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    3. [3]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    4. [4]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    5. [5]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    6. [6]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    7. [7]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    8. [8]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    9. [9]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    10. [10]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    11. [11]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    12. [12]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    13. [13]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    14. [14]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    15. [15]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    16. [16]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    17. [17]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    18. [18]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    19. [19]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    20. [20]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

Metrics
  • PDF Downloads(0)
  • Abstract views(586)
  • HTML views(92)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return